1. Nagata M, English JD, Ono N, et al. Diverse stem cells for periodontal tissue formation and regeneration. Genesis 2022;60:e23495.
https://doi.org/10.1002/dvg.23495.
4. Huja SS, Fernandez SA, Hill KJ, et al. Remodeling dynamics in the alveolar process in skeletally mature dogs. Anat Rec A Discov Mol Cell Evol Biol 2006;288:1243-9.
https://doi.org/10.1002/ar.a.20396.
5. Son C, Choi MS, Park JC. Different responsiveness of alveolar bone and long bone to epithelial-mesenchymal interaction-related factor. JBMR Plus 2020;4:e10382.
https://doi.org/10.1002/jbm4.10382.
8. Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;20:345-57.
https://doi.org/10.1210/edrv.20.3.0367.
9. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315-23.
https://doi.org/10.1038/16852.
11. Yamaguchi M, Fukasawa S. Is inflammation a friend or foe for orthodontic treatment?: inflammation in orthodontically induced inflammatory root resorption and accelerating tooth movement. Int J Mol Sci 2021;22:2388.
https://doi.org/10.3390/ijms22052388.
12. Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002;3:889-901.
https://doi.org/10.1016/s1534-5807(02)00369-6.
15. Wu L, Su Y, Lin F, et al. MicroRNA-21 promotes orthodontic tooth movement by modulating the RANKL/OPG balance in T cells. Oral Dis 2020;26:370-80.
https://doi.org/10.1111/odi.13239.
19. Yang CY, Jeon HH, Alshabab A, et al. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. Int J Oral Sci 2018;10:3.
https://doi.org/10.1038/s41368-017-0004-8.
20. Koda N, Sato T, Shinohara M, et al. The transcription factor mohawk homeobox regulates homeostasis of the periodontal ligament. Development 2017;144:313-20.
https://doi.org/10.1242/dev.135798.
21. Rangiani A, Jing Y, Ren Y, et al. Critical roles of periostin in the process of orthodontic tooth movement. Eur J Orthod 2016;38:373-8.
https://doi.org/10.1093/ejo/cjv071.
22. Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 2011;17:1231-4.
https://doi.org/10.1038/nm.2452.
27. Xiong J, Piemontese M, Onal M, et al. Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One 2015;10:e0138189.
https://doi.org/10.1371/journal.pone.0138189.
28. Zhang J, Link DC. Targeting of mesenchymal stromal cells by cre-recombinase transgenes commonly used to target osteoblast lineage cells. J Bone Miner Res 2016;31:2001-7.
https://doi.org/10.1002/jbmr.2877.
30. Kacprzak A, Strzecki A. Methods of accelerating orthodontic tooth movement: a review of contemporary literature. Dent Med Probl 2018;55:197-206.
https://doi.org/10.17219/dmp/90989.
34. Lin D, Li L, Sun Y, et al. IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology 2014;144:472-85.
https://doi.org/10.1111/imm.12395.
36. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998;12:1260-8.
https://doi.org/10.1101/gad.12.9.1260.
38. Castroflorio T, Gamerro EF, Caviglia GP, et al. Biochemical markers of bone metabolism during early orthodontic tooth movement with aligners. Angle Orthod 2017;87:74-81.
https://doi.org/10.2319/022416-159.1.
39. Garlet TP, Coelho U, Silva JS, et al. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 2007;115:355-62.
https://doi.org/10.1111/j.1600-0722.2007.00469.x.
40. Baxter SJ, Sydorak I, Ma PX, et al. Impact of pharmacologic inhibition of tooth movement on periodontal and tooth root tissues during orthodontic force application. Orthod Craniofac Res 2020;23:35-43.
https://doi.org/10.1111/ocr.12350.
41. Dunn MD, Park CH, Kostenuik PJ, et al. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 2007;41:446-55.
https://doi.org/10.1016/j.bone.2007.04.194.
43. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 2008;283:5866-75.
https://doi.org/10.1074/jbc.M705092200.
45. Nishiyama Y, Matsumoto T, Lee JW, et al. Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Arch Oral Biol 2015;60:45-54.
https://doi.org/10.1016/j.archoralbio.2014.08.013.
52. Jang DI, Lee AH, Shin HY, et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci 2021;22:2719.
https://doi.org/10.3390/ijms22052719.
53. Lam J, Takeshita S, Barker JE, et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000;106:1481-8.
https://doi.org/10.1172/jci11176.
55. Tsukasaki M, Hamada K, Okamoto K, et al. LOX fails to substitute for RANKL in osteoclastogenesis. J Bone Miner Res 2017;32:434-9.
https://doi.org/10.1002/jbmr.2990.
56. Kitaura H, Sands MS, Aya K, et al. Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo. J Immunol 2004;173:4838-46.
https://doi.org/10.4049/jimmunol.173.8.4838.
58. Ohori F, Kitaura H, Marahleh A, et al. Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res 2019;2019:9716758.
https://doi.org/10.1155/2019/9716758.
59. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996;87:2095-147.
62. Hofbauer LC, Lacey DL, Dunstan CR, et al. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999;25:255-9.
https://doi.org/10.1016/s8756-3282(99)00162-3.
63. Lee YM, Fujikado N, Manaka H, et al. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol 2010;22:805-16.
https://doi.org/10.1093/intimm/dxq431.
64. Davidovitch Z, Nicolay OF, Ngan PW, et al. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin North Am 1988;32:411-35.
67. Jayaprakash PK, Basavanna JM, Grewal H, et al. Elevated levels of Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, epidermal growth factor, and β2-microglobulin levels in gingival crevicular fluid during human orthodontic tooth movement (OTM). J Family Med Prim Care 2019;8:1602-6.
https://doi.org/10.4103/jfmpc.jfmpc_204_19.
71. Udagawa N, Takahashi N, Katagiri T, et al. Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J Exp Med 1995;182:1461-8.
https://doi.org/10.1084/jem.182.5.1461.
72. Palmqvist P, Persson E, Conaway HH, et al. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol 2002;169:3353-62.
https://doi.org/10.4049/jimmunol.169.6.3353.
73. Gong X, Sun S, Yang Y, et al. Osteoblastic STAT3 is crucial for orthodontic force driving alveolar bone remodeling and tooth movement. J Bone Miner Res 2023;38:214-27.
https://doi.org/10.1002/jbmr.4744.
75. Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000;408:600-5.
https://doi.org/10.1038/35046102.
77. Alhashimi N, Frithiof L, Brudvik P, et al. Orthodontic movement induces high numbers of cells expressing IFN-gamma at mRNA and protein levels. J Interferon Cytokine Res 2000;20:7-12.
https://doi.org/10.1089/107999000312685.
78. Kohara H, Kitaura H, Yoshimatsu M, et al. Inhibitory effect of interferon-γ on experimental tooth movement in mice. J Interferon Cytokine Res 2012;32:426-31.
https://doi.org/10.1089/jir.2011.0124.
79. FitzGerald GA. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2003;2:879-90.
https://doi.org/10.1038/nrd1225.
80. Ullrich N, Schröder A, Jantsch J, et al. The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain-an in vitro study of human periodontal ligament fibroblasts. Int J Oral Sci 2019;11:33.
https://doi.org/10.1038/s41368-019-0066-x.
81. Kamel MA, Picconi JL, Lara-Castillo N, et al. Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone. Bone 2010;47:872-81.
https://doi.org/10.1016/j.bone.2010.08.007.
82. Suzawa T, Miyaura C, Inada M, et al. The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 2000;141:1554-9.
https://doi.org/10.1210/endo.141.4.7405.
85. Weltman B, Vig KW, Fields HW, et al. Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop 2010;137:462-76. discussion 12A
https://doi.org/10.1016/j.ajodo.2009.06.021.
87. Zhang R, Yang G, Wu X, et al. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci 2013;9:228-36.
https://doi.org/10.7150/ijbs.5476.
92. Arai Y, English JD, Ono N, et al. Effects of antiresorptive medications on tooth root formation and tooth eruption in paediatric patients. Orthod Craniofac Res 2023;
https://doi.org/10.1111/ocr.12637.
93. Ono W, Sakagami N, Nishimori S, et al. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat Commun 2016;7:11277.
https://doi.org/10.1038/ncomms11277.
94. Takahashi A, Nagata M, Gupta A, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci U S A 2019;116:575-80.
https://doi.org/10.1073/pnas.1810200115.
95. Fukushima H, Jimi E, Kajiya H, et al. Parathyroid-hormone-related protein induces expression of receptor activator of NF-{kappa}B ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway. J Dent Res 2005;84:329-34.
https://doi.org/10.1177/154405910508400407.
96. Fukushima H, Kajiya H, Takada K, et al. Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur J Oral Sci 2003;111:346-52.
https://doi.org/10.1034/j.1600-0722.2003.00051.x.
97. Al-Qawasmi RA, Hartsfield JK Jr, Everett ET, et al. Genetic predisposition to external apical root resorption. Am J Orthod Dentofacial Orthop 2003;123:242-52.
https://doi.org/10.1067/mod.2003.42.
99. Al-Qawasmi RA, Hartsfield JK Jr, Everett ET, et al. Root resorption associated with orthodontic force in inbred mice: genetic contributions. Eur J Orthod 2006;28:13-9.
https://doi.org/10.1093/ejo/cji090.
101. Diercke K, Kohl A, Lux CJ, et al. IL-1β and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. J Orofac Orthop 2012;73:397-412.
https://doi.org/10.1007/s00056-012-0095-y.
102. Hikita A, Yana I, Wakeyama H, et al. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-kappaB ligand. J Biol Chem 2006;281:36846-55.
https://doi.org/10.1074/jbc.M606656200.
103. Nakashima T, Kobayashi Y, Yamasaki S, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 2000;275:768-75.
https://doi.org/10.1006/bbrc.2000.3379.
104. Xiong J, Cawley K, Piemontese M, et al. Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss. Nat Commun 2018;9:2909.
https://doi.org/10.1038/s41467-018-05244-y.
106. Decker MG, Nottmeier C, Luther J, et al. Role of c-Fos in orthodontic tooth movement: an in vivo study using transgenic mice. Clin Oral Investig 2021;25:593-601.
https://doi.org/10.1007/s00784-020-03503-1.
107. Zhang X, Li Z, Zhao Z, et al. Runx1/miR-26a/Jagged1 signaling axis controls osteoclastogenesis and alleviates orthodontically induced inflammatory root resorption. Int Immunopharmacol 2021;100:107991.
https://doi.org/10.1016/j.intimp.2021.107991.