2. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97:13625-30.
https://doi.org/10.1073/pnas.240309797.
5. Kim S, Shin SJ, Song Y, et al. In vivo experiments with dental pulp stem cells for pulp-dentin complex regeneration. Mediators Inflamm 2015;2015:409347.
https://doi.org/10.1155/2015/409347.
8. Galler KM, Weber M, Korkmaz Y, et al. Inflammatory response mechanisms of the dentine-pulp complex and the periapical tissues. Int J Mol Sci 2021;22:1480.
https://doi.org/10.3390/ijms22031480.
9. Liu J, Yu F, Sun Y, et al. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 2015;33:627-38.
https://doi.org/10.1002/stem.1909.
11. Staniowski T, Zawadzka-Knefel A, Skośkiewicz-Malinowska K. Therapeutic potential of dental pulp stem cells according to different transplant types. Molecules 2021;26:7423.
https://doi.org/10.3390/molecules26247423.
14. Shahidi MK. Peripheral nerve glia as multipotent progenitors in craniofacial development [dissertation]. Stockholm, SE: Karolinska Institutet; 2015.
15. Hermans F, Hemeryck L, Lambrichts I, et al. Intertwined signaling pathways governing tooth development: a give-and-take between canonical wnt and shh. Front Cell Dev Biol 2021;9:758203.
https://doi.org/10.3389/fcell.2021.758203.
16. Jing J, Feng J, Yuan Y, et al. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun 2022;13:4803.
https://doi.org/10.1038/s41467-022-32490-y.
17. Huang GT, Yamaza T, Shea LD, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 2010;16:605-15.
https://doi.org/10.1089/ten.TEA.2009.0518.
20. Dong Q, Wang Y, Mohabatpour F, et al. Dental pulp stem cells: Isolation, characterization, expansion, and odontoblast differentiation for tissue engineering. Methods Mol Biol 2019;1922:91-101.
https://doi.org/10.1007/978-1-4939-9012-2_9.
21. Iezzi I, Cerqueni G, Licini C, et al. Dental pulp stem cells senescence and regenerative potential relationship. J Cell Physiol 2019;234:7186-97.
https://doi.org/10.1002/jcp.27472.
22. Cao HL, Chung JH, Choung PH. Allogeneic fibrin clot for odontogenic/cementogenic differentiation of human dental mesenchymal stem cells. Tissue Eng Regen Med 2020;17:511-24.
https://doi.org/10.1007/s13770-020-00279-z.
23. Liu GX, Ma S, Li Y, et al. Hsa-let-7c controls the committed differentiation of IGF-1-treated mesenchymal stem cells derived from dental pulps by targeting IGF-1R via the MAPK pathways. Exp Mol Med 2018;50:1-14.
https://doi.org/10.1038/s12276-018-0048-7.
24. Liu M, Zhao L, Hu J, et al. Endothelial cells and endothelin-1 promote the odontogenic differentiation of dental pulp stem cells. Mol Med Rep 2018;18:893-901.
https://doi.org/10.3892/mmr.2018.9033.
27. Seidel K, Marangoni P, Tang C, et al. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. Elife 2017;6:e24712.
https://doi.org/10.7554/eLife.24712.
28. Zhao H, Feng J, Seidel K, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 2014;14:160-73.
https://doi.org/10.1016/j.stem.2013.12.013.
30. Bayarsaihan D, Enkhmandakh B, Vijaykumar A, et al. Single-cell transcriptome analysis defines mesenchymal stromal cells in the mouse incisor dental pulp. Gene Expr Patterns 2022;43:119228.
https://doi.org/10.1016/j.gep.2021.119228.
34. Ballini A, Cantore S, Scacco S, et al. A comparative study on different stemness gene expression between dental pulp stem cells vs. dental bud stem cells. Eur Rev Med Pharmacol Sci 2019;23:1626-33.
https://doi.org/10.26355/eurrev_201902_17122.
35. Huang CE, Hu FW, Yu CH, et al. Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells. Int J Mol Sci 2014;15:18623-39.
https://doi.org/10.3390/ijms151018623.
36. Tao H, Lin H, Sun Z, et al. Klf4 promotes dentinogenesis and odontoblastic differentiation via modulation of TGF-β signaling pathway and interaction with histone acetylation. J Bone Miner Res 2019;34:1502-16.
https://doi.org/10.1002/jbmr.3716.
37. Liu Y, Gan L, Cui DX, et al. Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics. World J Stem Cells 2021;13:1647-66.
https://doi.org/10.4252/wjsc.v13.i11.1647.
40. Tatullo M, Marrelli M, Shakesheff KM, et al. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015;9:1205-16.
https://doi.org/10.1002/term.1899.
41. Babb R, Chandrasekaran D, Carvalho Moreno Neves V, et al. Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/β-catenin signaling in response to tooth damage. Sci Rep 2017;7:3102.
https://doi.org/10.1038/s41598-017-03145-6.
43. Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2021;383:603-16.
https://doi.org/10.1007/s00441-020-03271-0.
44. Oka S, Oka K, Xu X, et al. Cell autonomous requirement for TGF-beta signaling during odontoblast differentiation and dentin matrix formation. Mech Dev 2007;124:409-15.
https://doi.org/10.1016/j.mod.2007.02.003.
45. Feng J, Jing J, Li J, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development 2017;144:2560-9.
https://doi.org/10.1242/dev.150136.
48. Solidum JGN, Jeong Y, Heralde F 3rd, et al. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023;14:1137063.
https://doi.org/10.3389/fphys.2023.1137063.
49. Wilk K, Yeh SA, Mortensen LJ, et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration. Stem Cell Reports 2017;8:933-46.
https://doi.org/10.1016/j.stemcr.2017.03.002.
50. Park D, Spencer JA, Koh BI, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 2012;10:259-72.
https://doi.org/10.1016/j.stem.2012.02.003.
52. Byers MR, Närhi MV. Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Biol Med 1999;10:4-39.
https://doi.org/10.1177/10454411990100010101.
58. Kimberly CL, Byers MR. Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related peptide and axonal sprouting. Anat Rec 1988;222:289-300.
https://doi.org/10.1002/ar.1092220310.
59. Neves VC, Babb R, Chandrasekaran D, et al. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci Rep 2017;7:39654.
https://doi.org/10.1038/srep39654.
62. Dao V, Renjen R, Prasad HS, et al. Cementum, pulp, periodontal ligament, and bone response after direct injury with orthodontic anchorage screws: a histomorphologic study in an animal model. J Oral Maxillofac Surg 2009;67:2440-5.
https://doi.org/10.1016/j.joms.2009.04.138.
64. Yang D, Ortinau L, Jeong Y, et al. Advances and challenges in intravital imaging of craniofacial and dental progenitor cells. Genesis 2022;60:e23498.
https://doi.org/10.1002/dvg.23498.
70. Sulewski JG. Chapter-12 Air abrasion: Background and cavity preparation. In: Graeber JJ, editors. Microinvasive dentistry: Clinical strategies and tools. New Delhi, IN: Jaypee Brothers Medical Publishers; 2021. p.99. -106.
72. Kitamura C, Nishihara T, Terashita M, et al. Regeneration approaches for dental pulp and periapical tissues with growth factors, biomaterials, and laser irradiation. Polymers (Basel) 2011;3:1776-93.
https://doi.org/10.3390/polym3041776.
76. Pini NI, Sundfeld-Neto D, Aguiar FH, et al. Enamel microabrasion: an overview of clinical and scientific considerations. World J Clin Cases 2015;3:34-41.
https://doi.org/10.12998/wjcc.v3.i1.34.
79. Feng J, Mantesso A, De Bari C, et al. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 2011;108:6503-8.
https://doi.org/10.1073/pnas.1015449108.
83. Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning 2014;7:89-99.
https://doi.org/10.2147/sccaa.S51009.
85. Versiani MA, Keleş A. Applications of micro-CT technology in endodontics. In: Orhan K, editors. Micro-computed tomography (micro-CT) in medicine and engineering. Cham, CH: Springer; 2020. p.183. -211.