1. Morris HA, Anderson PH. Autocrine and paracrine actions of vitamin d. Clin Biochem Rev 2010;31:129-38.
3. Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008;29:726-76.
https://doi.org/10.1210/er.2008-0004.
4. Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391-6.
https://doi.org/10.1038/ng0897-391.
5. Kitanaka S, Takeyama K, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 1998;338:653-61.
https://doi.org/10.1056/nejm199803053381004.
6. Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1alpha-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 2001;98:7498-503.
https://doi.org/10.1073/pnas.131029498.
7. Zhang Y, Fang F, Tang J, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ 2019;366:l4673.
https://doi.org/10.1136/bmj.l4673.
11. Miyamoto H, Kawakami D, Hanafusa N, et al. Determination of a serum 25-hydroxyvitamin D reference ranges in Japanese adults using fully automated liquid chromatography-tandem mass spectrometry. J Nutr 2023;153:1253-64.
https://doi.org/10.1016/j.tjnut.2023.01.036.
14. Forno E, Bacharier LB, Phipatanakul W, et al. Effect of vitamin D3 supplementation on severe asthma exacerbations in children with asthma and low vitamin D levels: the VDKA randomized clinical trial. JAMA 2020;324:752-60.
https://doi.org/10.1001/jama.2020.12384.
16. Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014;159:80-93.
https://doi.org/10.1016/j.cell.2014.08.007.
19. Harrison JS, Bershadskiy A. Clinical experience using vitamin d and analogs in the treatment of myelodysplasia and acute myeloid leukemia: a review of the literature. Leuk Res Treatment 2012;2012:125814.
https://doi.org/10.1155/2012/125814.
22. Chen Y, Zhang J, Ge X, et al. Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. J Biol Chem 2013;288:19450-8.
https://doi.org/10.1074/jbc.M113.467670.
25. Tebben PJ, Milliner DS, Horst RL, et al. Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab 2012;97:E423-7.
https://doi.org/10.1210/jc.2011-1935.
26. Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998;13:325-49.
https://doi.org/10.1359/jbmr.1998.13.3.325.
27. Sawatsubashi S, Nishimura K, Mori J, et al. The function of the vitamin D receptor and a possible role of enhancer RNA in epigenomic regulation of target genes: implications for bone metabolism. J Bone Metab 2019;26:3-12.
https://doi.org/10.11005/jbm.2019.26.1.3.
29. Meyer MB, Goetsch PD, Pike JW. A downstream intergenic cluster of regulatory enhancers contributes to the induction of CYP24A1 expression by 1alpha,25-dihydroxyvitamin D3. J Biol Chem 2010;285:15599-610.
https://doi.org/10.1074/jbc.M110.119958.
30. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121-41.
32. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012;13:343-57.
https://doi.org/10.1038/nrg3173.
33. Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 2006;20:1405-28.
https://doi.org/10.1101/gad.1424806.
34. Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 2014;15:93-106.
https://doi.org/10.1038/nrg3607.
36. Matsumoto T, Yamamoto K, Takeuchi T, et al. Eldecalcitol is superior to alfacalcidol in maintaining bone mineral density in glucocorticoid-induced osteoporosis patients (e-GLORIA). J Bone Miner Metab 2020;38:522-32.
https://doi.org/10.1007/s00774-020-01091-4.
37. Matsumoto T, Ito M, Hayashi Y, et al. A new active vitamin D3 analog, eldecalcitol, prevents the risk of osteoporotic fractures-a randomized, active comparator, double-blind study. Bone 2011;49:605-12.
https://doi.org/10.1016/j.bone.2011.07.011.
38. Rovito D, Belorusova AY, Chalhoub S, et al. Cytosolic sequestration of the vitamin D receptor as a therapeutic option for vitamin D-induced hypercalcemia. Nat Commun 2020;11:6249.
https://doi.org/10.1038/s41467-020-20069-4.
39. Riggs BL, Hartmann LC. Selective estrogen-receptor modulators - mechanisms of action and application to clinical practice. N Engl J Med 2003;348:618-29.
https://doi.org/10.1056/NEJMra022219.
41. McDonnell DP, Wardell SE. The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol 2010;10:620-8.
https://doi.org/10.1016/j.coph.2010.09.007.
42. Berry M, Metzger D, Chambon P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 1990;9:2811-8.
https://doi.org/10.1002/j.1460-2075.1990.tb07469.x.
43. Negro-Vilar A. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J Clin Endocrinol Metab 1999;84:3459-62.
https://doi.org/10.1210/jcem.84.10.6122.
45. Nettles KW, Sun J, Radek JT, et al. Allosteric control of ligand selectivity between estrogen receptors alpha and beta: Implications for other nuclear receptors. Mol Cell 2004;13:317-27.
https://doi.org/10.1016/s1097-2765(04)00054-1.
46. Nadal M, Prekovic S, Gallastegui N, et al. Structure of the homodimeric androgen receptor ligand-binding domain. Nat Commun 2017;8:14388.
https://doi.org/10.1038/ncomms14388.
47. Brzozowski AM, Pike AC, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997;389:753-8.
https://doi.org/10.1038/39645.
48. Nagpal S, Saunders M, Kastner P, et al. Promoter context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 1992;70:1007-19.
https://doi.org/10.1016/0092-8674(92)90250-g.
50. Sawada T, Kanemoto Y, Amano R, et al. Antagonistic action of a synthetic androgen ligand mediated by chromatin remodeling in a human prostate cancer cell line. Biochem Biophys Res Commun 2022;612:110-8.
https://doi.org/10.1016/j.bbrc.2022.04.109.