3. Takayanagi H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007;7:292-304.
https://doi.org/10.1038/nri2062.
5. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315-23.
https://doi.org/10.1038/16852.
7. Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 1997;186:2075-80.
https://doi.org/10.1084/jem.186.12.2075.
8. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998;95:3597-602.
https://doi.org/10.1073/pnas.95.7.3597.
10. Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002;3:889-901.
https://doi.org/10.1016/s1534-5807(02)00369-6.
14. Yoshida H, Hayashi S, Kunisada T, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990;345:442-4.
https://doi.org/10.1038/345442a0.
16. Brown HA, Thomas PG, Lindsley CW. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov 2017;16:351-67.
https://doi.org/10.1038/nrd.2016.252.
19. Kodaki T, Yamashita S. Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. J Biol Chem 1997;272:11408-13.
https://doi.org/10.1074/jbc.272.17.11408.
20. Hammond SM, Altshuller YM, Sung TC, et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem 1995;270:29640-3.
https://doi.org/10.1074/jbc.270.50.29640.
21. Colley WC, Sung TC, Roll R, et al. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 1997;7:191-201.
https://doi.org/10.1016/s0960-9822(97)70090-3.
22. Freyberg Z, Sweeney D, Siddhanta A, et al. Intracellular localization of phospholipase D1 in mammalian cells. Mol Biol Cell 2001;12:943-55.
https://doi.org/10.1091/mbc.12.4.943.
23. Du G, Altshuller YM, Vitale N, et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol 2003;162:305-15.
https://doi.org/10.1083/jcb.200302033.
24. Brown FD, Thompson N, Saqib KM, et al. Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol 1998;8:835-8.
https://doi.org/10.1016/s0960-9822(98)70326-4.
25. O’Luanaigh N, Pardo R, Fensome A, et al. Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. Mol Biol Cell 2002;13:3730-46.
https://doi.org/10.1091/mbc.e02-04-0213.
26. Du G, Huang P, Liang BT, et al. Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 2004;15:1024-30.
https://doi.org/10.1091/mbc.e03-09-0673.
29. Jin JK, Kim NH, Lee YJ, et al. Phospholipase D1 is up-regulated in the mitochondrial fraction from the brains of Alzheimer’s disease patients. Neurosci Lett 2006;407:263-7.
https://doi.org/10.1016/j.neulet.2006.08.062.
30. Hong KW, Jin HS, Lim JE, et al. Non-synonymous single-nucleotide polymorphisms associated with blood pressure and hypertension. J Hum Hypertens 2010;24:763-74.
https://doi.org/10.1038/jhh.2010.9.
31. Bae EJ, Lee HJ, Jang YH, et al. Phospholipase D1 regulates autophagic flux and clearance of α-synuclein aggregates. Cell Death Differ 2014;21:1132-41.
https://doi.org/10.1038/cdd.2014.30.
32. Kim HJ, Lee DK, Jin X, et al. Phospholipase D2 controls bone homeostasis by modulating M-CSF-dependent osteoclastic cell migration and microtubule stability. Exp Mol Med 2022;54:1146-55.
https://doi.org/10.1038/s12276-022-00820-1.
33. Kang DW, Hwang WC, Noh YN, et al. Deletion of phospholipase D1 decreases bone mass and increases fat mass via modulation of Runx2, β-catenin-osteoprotegerin, PPAR-γ and C/EBPα signaling axis. Biochim Biophys Acta Mol Basis Dis 2021;1867:166084.
https://doi.org/10.1016/j.bbadis.2021.166084.
35. Imamura Y, Kozawa O, Suzuki A, et al. Mechanism of phospholipase D activation induced by prostaglandin D2 in osteoblast-like cells: function of Ca2+/calmodulin. Cell Signal 1995;7:45-51.
https://doi.org/10.1016/0898-6568(94)00059-k.
36. Oiso Y, Suzuki A, Kozawa O. Effect of prostaglandin E2 on phospholipase D activity in osteoblast-like MC3T3-E1 cells. J Bone Miner Res 1995;10:1185-90.
https://doi.org/10.1002/jbmr.5650100807.
37. Kozawa O, Suzuki A, Kotoyori J, et al. Prostaglandin F2 alpha activates phospholipase D independently from activation of protein kinase C in osteoblast-like cells. J Cell Biochem 1994;55:373-9.
https://doi.org/10.1002/jcb.240550315.
38. Sugiyama T, Sakai T, Nozawa Y, et al. Prostaglandin F2 alpha-stimulated phospholipase D activation in osteoblast-like MC3T3-E1 cells: involvement in sustained 1,2-diacylglycerol production. Biochem J 1994;298:479-84.
https://doi.org/10.1042/bj2980479.
39. Kozawa O, Suzuki A, Watanabe Y, et al. Effect of platelet-derived growth factor on phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like cells. Endocrinology 1995;136:4473-8.
https://doi.org/10.1210/endo.136.10.7664667.
43. Singh AT, Frohman MA, Stern PH. Parathyroid hormone stimulates phosphatidylethanolamine hydrolysis by phospholipase D in osteoblastic cells. Lipids 2005;40:1135-40.
https://doi.org/10.1007/s11745-005-1477-y.
44. Singh AT, Gilchrist A, Voyno-Yasenetskaya T, et al. G alpha12/G alpha13 subunits of heterotrimeric G proteins mediate parathyroid hormone activation of phospholipase D in UMR-106 osteoblastic cells. Endocrinology 2005;146:2171-5.
https://doi.org/10.1210/en.2004-1283.
46. Abdallah D, Skafi N, Hamade E, et al. Effects of phospholipase D during cultured osteoblast mineralization and bone formation. J Cell Biochem 2019;120:5923-35.
https://doi.org/10.1002/jcb.27881.
47. Bendre MS, Margulies AG, Walser B, et al. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 2005;65:11001-9.
https://doi.org/10.1158/0008-5472.Can-05-2630.
48. Hsu YL, Hung JY, Ko YC, et al. Phospholipase D signaling pathway is involved in lung cancer-derived IL-8 increased osteoclastogenesis. Carcinogenesis 2010;31:587-96.
https://doi.org/10.1093/carcin/bgq030.
51. Han SW, Jung YK, Lee EJ, et al. DICAM inhibits angiogenesis via suppression of AKT and p38 MAP kinase signalling. Cardiovasc Res 2013;98:73-82.
https://doi.org/10.1093/cvr/cvt019.
52. Munugalavadla V, Vemula S, Sims EC, et al. The p85alpha subunit of class IA phosphatidylinositol 3-kinase regulates the expression of multiple genes involved in osteoclast maturation and migration. Mol Cell Biol 2008;28:7182-98.
https://doi.org/10.1128/mcb.00920-08.
53. Destaing O, Saltel F, Géminard JC, et al. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 2003;14:407-16.
https://doi.org/10.1091/mbc.e02-07-0389.
55. Hong JM, Teitelbaum SL, Kim TH, et al. Calpain-6, a target molecule of glucocorticoids, regulates osteoclastic bone resorption via cytoskeletal organization and microtubule acetylation. J Bone Miner Res 2011;26:657-65.
https://doi.org/10.1002/jbmr.241.
56. Shinohara M, Nakamura M, Masuda H, et al. Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B-mediated vesicle transport. J Bone Miner Res 2012;27:2464-75.
https://doi.org/10.1002/jbmr.1703.
57. Matsumoto T, Nagase Y, Hirose J, et al. Regulation of bone resorption and sealing zone formation in osteoclasts occurs through protein kinase B-mediated microtubule stabilization. J Bone Miner Res 2013;28:1191-202.
https://doi.org/10.1002/jbmr.1844.