2. Dalle Carbonare L, Giannini S. Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest 2004;27:99-105.
https://doi.org/10.1007/bf03350919.
3. Silva BC, Broy SB, Boutroy S, et al. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: Trabecular bone score. J Clin Densitom 2015;18:309-30.
https://doi.org/10.1016/j.jocd.2015.06.008.
4. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 2008;42:775-87.
https://doi.org/10.1016/j.bone.2007.11.018.
6. Hans D, Barthe N, Boutroy S, et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 2011;14:302-12.
https://doi.org/10.1016/j.jocd.2011.05.005.
7. Shevroja E, Aubry-Rozier B, Hans G, et al. Clinical performance of the updated trabecular bone score (TBS) algorithm, which accounts for the soft tissue thickness: The osteoLaus study. J Bone Miner Res 2019;34:2229-37.
https://doi.org/10.1002/jbmr.3851.
8. Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 2014;29:518-30.
https://doi.org/10.1002/jbmr.2176.
9. Krohn K, Schwartz EN, Chung YS, et al. Dual-energy X-ray absorptiometry monitoring with trabecular bone score: 2019 ISCD official position. J Clin Densitom 2019;22:501-5.
https://doi.org/10.1016/j.jocd.2019.07.006.
10. Krueger D, Fidler E, Libber J, et al. Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom 2014;17:60-5.
https://doi.org/10.1016/j.jocd.2013.05.001.
11. Leslie WD, Aubry-Rozier B, Lamy O, et al. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 2013;98:602-9.
https://doi.org/10.1210/jc.2012-3118.
13. Hans D, Goertzen AL, Krieg MA, et al. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 2011;26:2762-9.
https://doi.org/10.1002/jbmr.499.
14. Iki M, Tamaki J, Kadowaki E, et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res 2014;29:399-407.
https://doi.org/10.1002/jbmr.2048.
15. McCloskey EV, Odén A, Harvey NC, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 2016;31:940-8.
https://doi.org/10.1002/jbmr.2734.
16. Kim H, Kim JH, Kim MJ, et al. Low predictive value of FRAX adjusted by trabecular bone score for osteoporotic fractures in Korean women: A community-based cohort study. Endocrinol Metab (Seoul) 2020;35:359-66.
https://doi.org/10.3803/EnM.2020.35.2.359.
17. Iki M, Fujita Y, Tamaki J, et al. Trabecular bone score may improve FRAX
® prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study. Osteoporos Int 2015;26:1841-8.
https://doi.org/10.1007/s00198-015-3092-3.
18. Su Y, Leung J, Hans D, et al. Added clinical use of trabecular bone score to BMD for major osteoporotic fracture prediction in older Chinese people: the Mr. OS and Ms. OS cohort study in Hong Kong. Osteoporos Int 2017;28:151-60.
https://doi.org/10.1007/s00198-016-3785-2.
19. Schousboe JT, Vo T, Taylor BC, et al. Prediction of incident major osteoporotic and hip fractures by trabecular bone score (TBS) and prevalent radiographic vertebral fracture in older men. J Bone Miner Res 2016;31:690-7.
https://doi.org/10.1002/jbmr.2713.
20. Tamaki J, Iki M, Sato Y, et al. Does Trabecular Bone Score (TBS) improve the predictive ability of FRAX(
®) for major osteoporotic fractures according to the Japanese Population-Based Osteoporosis (JPOS) cohort study? J Bone Miner Metab 2019;37:161-70.
https://doi.org/10.1007/s00774-018-0910-7.
23. Di Gregorio S, Del Rio L, Rodriguez-Tolra J, et al. Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS). Bone 2015;75:138-43.
https://doi.org/10.1016/j.bone.2014.12.062.
24. Shin MS, Cho EH, Kim HY. Longitudinal change in trabecular bone score during and after treatment of osteoporosis in postmenopausal Korean women. J Bone Metab 2017;24:117-24.
https://doi.org/10.11005/jbm.2017.24.2.117.
25. Leslie WD, Majumdar SR, Morin SN, et al. Change in trabecular bone score (TBS) with antiresorptive therapy does not predict fracture in women: The manitoba BMD cohort. J Bone Miner Res 2017;32:618-23.
https://doi.org/10.1002/jbmr.3054.
26. Popp AW, Guler S, Lamy O, et al. Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone Miner Res 2013;28:449-54.
https://doi.org/10.1002/jbmr.1775.
27. McClung MR, Lippuner K, Brandi ML, et al. Effect of denosumab on trabecular bone score in postmenopausal women with osteoporosis. Osteoporos Int 2017;28:2967-73.
https://doi.org/10.1007/s00198-017-4140-y.
28. Senn C, Günther B, Popp AW, et al. Comparative effects of teriparatide and ibandronate on spine bone mineral density (BMD) and microarchitecture (TBS) in postmenopausal women with osteoporosis: a 2-year open-label study. Osteoporos Int 2014;25:1945-51.
https://doi.org/10.1007/s00198-014-2703-8.
29. Saag KG, Agnusdei D, Hans D, et al. Trabecular bone score in patients with chronic glucocorticoid therapy-induced osteoporosis treated with alendronate or teriparatide. Arthritis Rheumatol 2016;68:2122-8.
https://doi.org/10.1002/art.39726.
30. Bilezikian JP, Hattersley G, Fitzpatrick LA, et al. Abaloparatide-SC improves trabecular microarchitecture as assessed by trabecular bone score (TBS): a 24-week randomized clinical trial. Osteoporos Int 2018;29:323-8.
https://doi.org/10.1007/s00198-017-4304-9.
31. Kim JH, Choi HJ, Ku EJ, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab 2015;100:475-82.
https://doi.org/10.1210/jc.2014-2047.
32. Choi YJ, Ock SY, Chung YS. Trabecular bone score (TBS) and TBS-adjusted fracture risk assessment tool are potential supplementary tools for the discrimination of morphometric vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Densitom 2016;19:507-14.
https://doi.org/10.1016/j.jocd.2016.04.001.
35. Florez H, Hernández-Rodríguez J, Muxi A, et al. Trabecular bone score improves fracture risk assessment in glucocorticoid-induced osteoporosis. Rheumatology (Oxford) 2020;59:1574-80.
https://doi.org/10.1093/rheumatology/kez464.
36. Romagnoli E, Cipriani C, Nofroni I, et al. “Trabecular Bone Score” (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone 2013;53:154-9.
https://doi.org/10.1016/j.bone.2012.11.041.
37. Rolighed L, Rejnmark L, Sikjaer T, et al. Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. J Clin Endocrinol Metab 2014;99:1072-80.
https://doi.org/10.1210/jc.2013-3978.
38. Bilezikian JP, Brandi ML, Eastell R, et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J Clin Endocrinol Metab 2014;99:3561-9.
https://doi.org/10.1210/jc.2014-1413.
43. Naylor KL, Prior J, Garg AX, et al. Trabecular bone score and incident fragility fracture risk in adults with reduced kidney function. Clin J Am Soc Nephrol 2016;11:2032-40.
https://doi.org/10.2215/cjn.00720116.
44. Vestergaard P, Lindholm J, Jørgensen JO, et al. Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur J Endocrinol 2002;146:51-6.
https://doi.org/10.1530/eje.0.1460051.
45. Eller-Vainicher C, Morelli V, Ulivieri FM, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res 2012;27:2223-30.
https://doi.org/10.1002/jbmr.1648.
47. Godang K, Olarescu NC, Bollerslev J, et al. Treatment of acromegaly increases BMD but reduces trabecular bone score: a longitudinal study. Eur J Endocrinol 2016;175:155-64.
https://doi.org/10.1530/eje-16-0340.
48. Bréban S, Briot K, Kolta S, et al. Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom 2012;15:260-6.
https://doi.org/10.1016/j.jocd.2012.01.007.
49. Kim D, Cho SK, Kim JY, et al. Association between trabecular bone score and risk factors for fractures in Korean female patients with rheumatoid arthritis. Mod Rheumatol 2016;26:540-5.
https://doi.org/10.3109/14397595.2015.1101212.
50. Choi YJ, Chung YS, Suh CH, et al. Trabecular bone score as a supplementary tool for the discrimination of osteoporotic fractures in postmenopausal women with rheumatoid arthritis. Medicine (Baltimore) 2017;96:e8661.
https://doi.org/10.1097/md.0000000000008661.
52. Anderson KB, Holloway-Kew KL, Mohebbi M, et al. Is trabecular bone score less affected by degenerative-changes at the spine than lumbar spine BMD? Arch Osteoporos 2018;13:127.
https://doi.org/10.1007/s11657-018-0544-3.
53. Wildberger L, Boyadzhieva V, Hans D, et al. Impact of lumbar syndesmophyte on bone health as assessed by bone density (BMD) and bone texture (TBS) in men with axial spondyloarthritis. Joint Bone Spine 2017;84:463-6.
https://doi.org/10.1016/j.jbspin.2016.05.015.
55. Kang KY, Goo HY, Park SH, et al. Trabecular bone score as an assessment tool to identify the risk of osteoporosis in axial spondyloarthritis: a case-control study. Rheumatology (Oxford) 2018;57:462-9.
https://doi.org/10.1093/rheumatology/kex377.
56. Moon JH, Kim KM, Oh TJ, et al. The effect of TSH suppression on vertebral trabecular bone scores in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 2017;102:78-85.
https://doi.org/10.1210/jc.2016-2740.
57. De Mingo Dominguez ML, Guadalix Iglesias S, Martin-Arriscado Arroba C, et al. Low trabecular bone score in postmenopausal women with differentiated thyroid carcinoma after long-term TSH suppressive therapy. Endocrine 2018;62:166-73.
https://doi.org/10.1007/s12020-018-1671-8.
58. Hawkins Carranza F, Guadalix Iglesias S, Luisa De Mingo Domínguez M, et al. Trabecular bone deterioration in differentiated thyroid cancer: Impact of long-term TSH suppressive therapy. Cancer Med 2020;9:5746-55.
https://doi.org/10.1002/cam4.3200.
59. Hong AR, Kim JH, Lee KH, et al. Long-term effect of aromatase inhibitors on bone microarchitecture and macroarchitecture in non-osteoporotic postmenopausal women with breast cancer. Osteoporos Int 2017;28:1413-22.
https://doi.org/10.1007/s00198-016-3899-6.
60. Mariotti V, Page DB, Davydov O, et al. Assessing fracture risk in early stage breast cancer patients treated with aromatase-inhibitors: An enhanced screening approach incorporating trabecular bone score. J Bone Oncol 2017;7:32-7.
https://doi.org/10.1016/j.jbo.2016.10.004.
61. Eller-Vainicher C, Filopanti M, Palmieri S, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol 2013;169:155-62.
https://doi.org/10.1530/eje-13-0305.
63. Luckman M, Hans D, Cortez N, et al. Spine trabecular bone score as an indicator of bone microarchitecture at the peripheral skeleton in kidney transplant recipients. Clin J Am Soc Nephrol 2017;12:644-52.
https://doi.org/10.2215/cjn.09850916.
64. Pérez-Sáez MJ, Herrera S, Prieto-Alhambra D, et al. Bone density, microarchitecture, and tissue quality long-term after kidney transplant. Transplantation 2017;101:1290-4.
https://doi.org/10.1097/tp.0000000000001328.
65. Kim BJ, Kwak MK, Ahn SH, et al. The association of cortisol and adrenal androgen with trabecular bone score in patients with adrenal incidentaloma with and without autonomous cortisol secretion. Osteoporos Int 2018;29:2299-307.
https://doi.org/10.1007/s00198-018-4608-4.
66. Vinolas H, Grouthier V, Mehsen-Cetre N, et al. Assessment of vertebral microarchitecture in overt and mild Cushing’s syndrome using trabecular bone score. Clin Endocrinol (Oxf) 2018;89:148-54.
https://doi.org/10.1111/cen.13743.
67. Shin YH, Gong HS, Lee KJ, et al. Older age and higher body mass index are associated with a more degraded trabecular bone score compared to bone mineral density. J Clin Densitom 2019;22:266-71.
https://doi.org/10.1016/j.jocd.2017.06.006.
69. Kim JH, Choi HJ, Ku EJ, et al. Regional body fat depots differently affect bone microarchitecture in postmenopausal Korean women. Osteoporos Int 2016;27:1161-8.
https://doi.org/10.1007/s00198-015-3329-1.
70. Amnuaywattakorn S, Sritara C, Utamakul C, et al. Simulated increased soft tissue thickness artefactually decreases trabecular bone score: a phantom study. BMC Musculoskelet Disord 2016;17:17.
https://doi.org/10.1186/s12891-016-0886-1.
71. Schacter GI, Leslie WD, Majumdar SR, et al. Clinical performance of an updated trabecular bone score (TBS) algorithm in men and women: the Manitoba BMD cohort. Osteoporos Int 2017;28:3199-203.
https://doi.org/10.1007/s00198-017-4166-1.
72. Mazzetti G, Berger C, Leslie WD, et al. Densitometer-specific differences in the correlation between body mass index and lumbar spine trabecular bone score. J Clin Densitom 2017;20:233-8.
https://doi.org/10.1016/j.jocd.2016.11.003.
73. Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom 2013;16:287-96.
https://doi.org/10.1016/j.jocd.2012.05.001.
74. Bandirali M, Poloni A, Sconfienza LM, et al. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study. Eur Radiol 2015;25:2194-8.
https://doi.org/10.1007/s00330-015-3606-6.
75. Pothuaud L, Barthe N, Krieg MA, et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 2009;12:170-6.
https://doi.org/10.1016/j.jocd.2008.11.006.
76. Winzenrieth R, Dufour R, Pothuaud L, et al. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 2010;86:104-9.
https://doi.org/10.1007/s00223-009-9322-y.
77. Rabier B, Héraud A, Grand-Lenoir C, et al. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone 2010;46:176-81.
https://doi.org/10.1016/j.bone.2009.06.032.
78. Del Rio LM, Winzenrieth R, Cormier C, et al. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int 2013;24:991-8.
https://doi.org/10.1007/s00198-012-2008-8.
79. Vasic J, Petranova T, Povoroznyuk V, et al. Evaluating spine micro-architectural texture (via TBS) discriminates major osteoporotic fractures from controls both as well as and independent of site matched BMD: the Eastern European TBS study. J Bone Miner Metab 2014;32:556-62.
https://doi.org/10.1007/s00774-013-0529-7.
80. Leib E, Winzenrieth R, Lamy O, et al. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int 2014;95:201-8.
https://doi.org/10.1007/s00223-014-9882-3.