1. Rantanen T, Guralnik JM, Sakari-Rantala R, et al. Disability, physical activity, and muscle strength in older women: the Women's Health and Aging Study. Arch Phys Med Rehabil 1999;80:130-135.
3. Keevil V, Mazzuin Razali R, Chin AV, et al. Grip strength in a cohort of older medical inpatients in Malaysia: a pilot study to describe the range, determinants and association with length of hospital stay. Arch Gerontol Geriatr 2013;56:155-159.
5. Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 2017;28:2781-2790.
6. Hassan EB, Duque G. Osteosarcopenia: A new geriatric syndrome. Aust Fam Physician 2017;46:849-853.
8. Kärkkäinen M, Rikkonen T, Kröger H, et al. Association between functional capacity tests and fractures: an eight-year prospective population-based cohort study. Osteoporos Int 2008;19:1203-1210.
9. Denk K, Lennon S, Gordon S, et al. The association between decreased hand grip strength and hip fracture in older people: A systematic review. Exp Gerontol 2018;111:1-9.
10. Kamiya K, Kajita E, Tachiki T, et al. Association between hand-grip strength and site-specific risks of major osteoporotic fracture: Results from the Japanese Population-based Osteoporosis Cohort Study. Maturitas 2019;130:13-20.
11. Samelson EJ, Hannan MT, Zhang Y, et al. Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study. J Bone Miner Res 2006;21:1207-1214.
12. Solgaard S, Kristiansen B, Jensen JS. Evaluation of instruments for measuring grip strength. Acta Orthop Scand 1984;55:569-572.
13. Härkönen R, Harju R, Alaranta H. Accuracy of the Jamar dynamometer. J Hand Ther 1993;6:259-262.
14. Mathiowetz V, Weber K, Volland G, et al. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am 1984;9:222-226.
15. Niebuhr BR, Marion R, Fike ML. Reliability of grip strength assessment with the computerized Jamar dynamometer. Occup Ther J Res 1994;14:3-18.
16. Flood-Joy M, Mathiowetz V. Grip-strength measurement: A comparison of three Jamar dynamometers. Occup Ther J Res 1987;7:235-243.
17. Lusardi MM, Bohannon RW. Hand grip strength: Comparability of measurements obtained with a jamar dynamometer and a modified sphygmomanometer. J Hand Ther 1991;4:117-122.
18. Hamilton A, Balnave R, Adams R. Grip strength testing reliability. J Hand Ther 1994;7:163-170.
19. Richards L, Palmiter-Thomas P. A critical review of tools, methods, and clinical utility for grip strength measurement. Crit Rev Phys Rehabil Med 2017;29:315-340.
20. MacDermid J, Solomon G, Valdes K, et al. Clinical assessment recommendations. 3rd ed. Mount Laurel, NJ: American Society of Hand Therapists; 2015.
21. Sipers WM, Verdijk LB, Sipers SJ, et al. The Martin Vigorimeter represents a reliable and more practical tool than the Jamar dynamometer to assess handgrip strength in the geriatric patient. J Am Med Dir Assoc 2016;17:466.e1-466.e7.
22. De Dobbeleer L, Theou O, Beyer I, et al. Martin Vigorimeter assesses muscle fatigability in older adults better than the Jamar Dynamometer. Exp Gerontol 2018;111:65-70.
23. Pincus T, Callahan LF, Sale WG, et al. Severe functional declines, work disability, and increased mortality in seventy-five rheumatoid arthritis patients studied over nine years. Arthritis Rheum 1984;27:864-872.
24. Milne JS, Maule MM. A longitudinal study of handgrip and dementia in older people. Age Ageing 1984;13:42-48.
25. Pincus T, Brooks RH, Callahan LF. Prediction of long-term mortality in patients with rheumatoid arthritis according to simple questionnaire and joint count measures. Ann Intern Med 1994;120:26-34.
26. Martins JC, Teixeira-Salmela LF, Castro e Souza LA, et al. Reliability and validity of the modified sphygmomanometer test for the assessment of strength of upper limb muscles after stroke. J Rehabil Med 2015;47:697-705.
27. Souza LACe, Martins JC, Teixeira-Salmela LF, et al. Evaluation of muscular strength with the modified sphygmomanometer test: a review of the literature. Fisioter Mov 2013;26:437-452.
29. Desrosiers J, Hebert R, Bravo G, et al. Comparison of the Jamar dynamometer and the Martin vigorimeter for grip strength measurements in a healthy elderly population. Scand J Rehabil Med 1995;27:137-143.
30. Molenaar HM, Zuidam JM, Selles RW, et al. Age-specific reliability of two grip-strength dynamometers when used by children. J Bone Joint Surg Am 2008;90:1053-1059.
31. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:601.
32. Ha YC, Hwang SC, Song SY, et al. Hand grip strength measurement in different epidemiologic studies using various methods for diagnosis of sarcopenia: a systematic review. Eur Geriatr Med 2018;9:277-288.
33. Kim M, Shinkai S. Prevalence of muscle weakness based on different diagnostic criteria in community-dwelling older adults: A comparison of grip strength dynamometers. Geriatr Gerontol Int 2017;17:2089-2095.
34. Stratford PW, Norman GR, McIntosh JM. Generalizability of grip strength measurements in patients with tennis elbow. Phys Ther 1989;69:276-281.
35. Guerra RS, Amaral TF. Comparison of hand dynamometers in elderly people. J Nutr Health Aging 2009;13:907-912.
36. Teraoka T. Studies on the peculiarity of grip strength in relation to body positions and aging. Kobe J Med Sci 1979;25:1-17.
37. Richards LG. Posture effects on grip strength. Arch Phys Med Rehabil 1997;78:1154-1156.
38. Hillman TE, Nunes QM, Hornby ST, et al. A practical posture for hand grip dynamometry in the clinical setting. Clin Nutr 2005;24:224-228.
39. Roberts HC, Denison HJ, Martin HJ, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 2011;40:423-429.
40. Mathiowetz V, Rennells C, Donahoe L. Effect of elbow position on grip and key pinch strength. J Hand Surg Am 1985;10:694-697.
41. De S, Sengupta P, Maity P, et al. Effect of body posture on hand grip strength in adult Bengalee population. J Exerc Sci Physiother 2011;7:79-88.
42. Oxford KL. Elbow positioning for maximum grip performance. J Hand Ther 2000;13:33-36.
43. Su CY, Lin JH, Chien TH, et al. Grip strength in different positions of elbow and shoulder. Arch Phys Med Rehabil 1994;75:812-815.
44. Pryce JC. The wrist position between neutral and ulnar deviation that facilitates the maximum power grip strength. J Biomech 1980;13:505-511.
45. O'Driscoll SW, Horii E, Ness R, et al. The relationship between wrist position, grasp size, and grip strength. J Hand Surg Am 1992;17:169-177.
46. Koopman JJ, van Bodegom D, van Heemst D, et al. Handgrip strength, ageing and mortality in rural Africa. Age Ageing 2015;44:465-470.
47. Spruit MA, Sillen MJ, Groenen MT, et al. New normative values for handgrip strength: results from the UK Biobank. J Am Med Dir Assoc 2013;14:775.e5-775.e11.
48. Mitsionis G, Pakos EE, Stafilas KS, et al. Normative data on hand grip strength in a Greek adult population. Int Orthop 2009;33:713-717.
49. Günther CM, Bürger A, Rickert M, et al. Grip strength in healthy caucasian adults: reference values. J Hand Surg Am 2008;33:558-565.
51. Lim SH, Kim YH, Lee JS. Normative data on grip strength in a population-based study with adjusting confounding factors: Sixth Korea national health and nutrition examination survey (2014-2015). Int J Environ Res Public Health 2019;16:E2235.
52. Jang HC. Recent progression in sarcopenia and sarcopenic obesity. J Korean Geriatr Soc 2011;15:1-7.
53. Sternfeld B, Ngo L, Satariano WA, et al. Associations of body composition with physical performance and self-reported functional limitation in elderly men and women. Am J Epidemiol 2002;156:110-121.
55. Rosenberg IH. Epidemiologic and methodologic problems in determining nutritional status of older persons: Summary comments. Am J Clin Nutr 1989;50:1231-1233.
57. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101.
58. Lauretani F, Russo CR, Bandinelli S, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985) 2003;95:1851-1860.
59. Wu SW, Wu SF, Liang HW, et al. Measuring factors affecting grip strength in a Taiwan Chinese population and a comparison with consolidated norms. Appl Ergon 2009;40:811-815.
60. Liu LK, Lee WJ, Liu CL, et al. Age-related skeletal muscle mass loss and physical performance in Taiwan: implications to diagnostic strategy of sarcopenia in Asia. Geriatr Gerontol Int 2013;13:964-971.
61. Tanimoto Y, Watanabe M, Sun W, et al. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan. Arch Gerontol Geriatr 2012;55:e9-e13.
63. Lee KS, Woo KJ, Shim JH, et al. The clinical study of grip and pinch strength in normal Korean adult. J Korean Orthop Assoc 1995;30:1589-1597.
64. Han SH, Nam KS, Ahn TK, et al. Analysis of grip and pinch strength in Korean people. J Korean Orthop Assoc 2009;44:219-225.
67. Osei-Hyiaman D, Ueji M, Toyokawa S, et al. Influence of grip strength on metacarpal bone mineral density in postmenopausal Japanese women: a cross-sectional study. Calcif Tissue Int 1999;64:263-266.
68. Di Monaco M, Di Monaco R, Manca M, et al. Handgrip strength is an independent predictor of distal radius bone mineral density in postmenopausal women. Clin Rheumatol 2000;19:473-476.
69. Hasegawa Y, Schneider P, Reiners C. Age, sex, and grip strength determine architectural bone parameters assessed by peripheral quantitative computed tomography (pQCT) at the human radius. J Biomech 2001;34:497-503.
70. Kaya A, Ozgocmen S, Ardicoglu O, et al. Relationship between grip strength and hand bone mineral density in healthy adults. Arch Med Res 2005;36:603-606.
71. Sinaki M, Fitzpatrick LA, Ritchie CK, et al. Site-specificity of bone mineral density and muscle strength in women: job-related physical activity. Am J Phys Med Rehabil 1998;77:470-476.
72. Kritz-Silverstein D, Barrett-Connor E. Grip strength and bone mineral density in older women. J Bone Miner Res 1994;9:45-51.
73. Zimmermann CL, Smidt GL, Brooks JS, et al. Relationship of extremity muscle torque and bone mineral density in postmenopausal women. Phys Ther 1990;70:302-309.
74. Foley KT, Owings TM, Pavol MJ, et al. Maximum grip strength is not related to bone mineral density of the proximal femur in older adults. Calcif Tissue Int 1999;64:291-294.
75. Aydin G, Atalar E, Keleş I, et al. Predictive value of grip strength for bone mineral density in males: site specific or systemic? Rheumatol Int 2006;27:125-129.
76. Nasri R, Hassen Zrour S, Rebai H, et al. Grip strength is a predictor of bone mineral density among adolescent combat sport athletes. J Clin Densitom 2013;16:92-97.
77. Izumotani K, Hagiwara S, Izumotani T, et al. Risk factors for osteoporosis in men. J Bone Miner Metab 2003;21:86-90.
78. Bevier WC, Wiswell RA, Pyka G, et al. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 1989;4:421-432.
79. Cauley JA, Fullman RL, Stone KL, et al. Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 2005;16:1525-1537.
80. McGrath RP, Kraemer WJ, Vincent BM, et al. Muscle strength Is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 2017;31:2586-2589.
81. Luo Y, Jiang K, He M. Association between grip strength and bone mineral density in general US population of NHANES 2013-2014. Arch Osteoporos 2020;15:47.
82. Cooper C, Atkinson EJ, Jacobsen SJ, et al. Population-based study of survival after osteoporotic fractures. Am J Epidemiol 1993;137:1001-1005.
83. Fisher ES, Baron JA, Malenka DJ, et al. Hip fracture incidence and mortality in New England. Epidemiology 1991;2:116-122.
84. Parker MJ, Anand JK. What is the true mortality of hip fractures? Public Health 1991;105:443-446.
85. Magaziner J, Fredman L, Hawkes W, et al. Changes in functional status attributable to hip fracture: a comparison of hip fracture patients to community-dwelling aged. Am J Epidemiol 2003;157:1023-1031.
87. Hershkovitz A, Yichayaou B, Ronen A, et al. The association between hand grip strength and rehabilitation outcome in post-acute hip fractured patients. Aging Clin Exp Res 2019;31:1509-1516.
88. Di Monaco M, Castiglioni C, De Toma E, et al. Handgrip strength but not appendicular lean mass is an independent predictor of functional outcome in hip-fracture women: a short-term prospective study. Arch Phys Med Rehabil 2014;95:1719-1724.
89. Wehren LE, Hawkes WG, Hebel JR, et al. Bone mineral density, soft tissue body composition, strength, and functioning after hip fracture. J Gerontol A Biol Sci Med Sci 2005;60:80-84.
90. Beloosesky Y, Weiss A, Manasian M, et al. Handgrip strength of the elderly after hip fracture repair correlates with functional outcome. Disabil Rehabil 2010;32:367-373.
92. Bean N, Bennett KM, Lehmann AB. Habitus and hip fracture revisited: skeletal size, strength and cognition rather than thinness? Age Ageing 1995;24:481-484.
94. Di Monaco M, Castiglioni C. Weakness and low lean mass in women with hip fracture: Prevalence according to the FNIH criteria and association with the short-term functional recovery. J Geriatr Phys Ther 2017;40:80-85.
95. Álvarez MN, Bonnardeaux PLD, Thuissard IJ, et al. Grip strength and functional recovery after hip fracture: An observational study in elderly population. Eur Geriatr Med 2016;7:556-560.
96. Savino E, Martini E, Lauretani F, et al. Handgrip strength predicts persistent walking recovery after hip fracture surgery. Am J Med 2013;126:1068-1075.e1.