2. Malgo F, Appelman-Dijkstra NM, Termaat MF, et al. High prevalence of secondary factors for bone fragility in patients with a recent fracture independently of BMD. Arch Osteoporos 2016;11:12.
https://doi.org/10.1007/s11657-016-0258-3.
3. Bours SP, van Geel TA, Geusens PP, et al. Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J Clin Endocrinol Metab 2011;96:1360-7.
https://doi.org/10.1210/jc.2010-2135.
4. Eller-Vainicher C, Cairoli E, Zhukouskaya VV, et al. Prevalence of subclinical contributors to low bone mineral density and/or fragility fracture. Eur J Endocrinol 2013;169:225-37.
https://doi.org/10.1530/eje-13-0102.
9. Ilich JZ, Brownbill RA, Tamborini L, et al. To drink or not to drink: How are alcohol, caffeine and past smoking related to bone mineral density in elderly women? J Am Coll Nutr 2002;21:536-44.
https://doi.org/10.1080/07315724.2002.10719252.
11. Olmos V, Bardoni N, Ridolfi AS, et al. Caffeine levels in beverages from Argentina’s market: Application to caffeine dietary intake assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2009;26:275-81.
https://doi.org/10.1080/02652030802430649.
12. Conforti AS, Gallo ME, Saraví FD. Yerba Mate (Ilex paraguariensis) consumption is associated with higher bone mineral density in postmenopausal women. Bone 2012;50:9-13.
https://doi.org/10.1016/j.bone.2011.08.029.
13. Brun LR, Brance ML, Lombarte M, et al. Effects of Yerba Mate (IIex paraguariensis) on histomorphometry, biomechanics, and densitometry on bones in the rat. Calcif Tissue Int 2015;97:527-34.
https://doi.org/10.1007/s00223-015-0043-0.
15. de Vasconcellos AC, Frazzon J, Zapata Noreña CP. Phenolic compounds present in Yerba Mate potentially increase human health: A critical review. Plant Foods Hum Nutr 2022;77:495-503.
https://doi.org/10.1007/s11130-022-01008-8.
16. Galante M, Brun LR, Mandón E, et al. Insights into yerba mate components: Chemistry and food applications. In: Rahman AU, editors. Studies in natural products chemistry. Amsterdam, NL: Elsevier; 2023. p.383. -433.
18. Chen Z, Pettinger MB, Ritenbaugh C, et al. Habitual tea consumption and risk of osteoporosis: A prospective study in the women’s health initiative observational cohort. Am J Epidemiol 2003;158:772-81.
https://doi.org/10.1093/aje/kwg214.
20. Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in post-menopausal women. Osteoporos Int 2019;30:3-44.
https://doi.org/10.1007/s00198-018-4704-5.
21. Camacho PM, Petak SM, Binkley N, et al. American association of clinical endocrinologists/American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract 2020;26:1-46.
https://doi.org/10.4158/gl-2020-0524suppl.
22. Clotet J, Martelli Y, Di Gregorio S, et al. Structural parameters of the proximal femur by 3-dimensional dual-energy X-ray absorptiometry software: Comparison with quantitative computed tomography. J Clin Densitom 2018;21:550-62.
https://doi.org/10.1016/j.jocd.2017.05.002.
23. Humbert L, Winzenrieth R, Di Gregorio S, et al. 3D analysis of cortical and trabecular bone from hip DXA: Precision and trend assessment interval in postmenopausal women. J Clin Densitom 2019;22:214-8.
https://doi.org/10.1016/j.jocd.2018.05.001.
24. Humbert L, Martelli Y, Fonolla R, et al. 3D-DXA: Assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images. IEEE Trans Med Imaging 2017;36:27-39.
https://doi.org/10.1109/tmi.2016.2593346.
25. Winzenrieth R, Humbert L, Di Gregorio S, et al. Effects of osteoporosis drug treatments on cortical and trabecular bone in the femur using DXA-based 3D modeling. Osteoporos Int 2018;29:2323-33.
https://doi.org/10.1007/s00198-018-4624-4.
26. Rosner B. Fundamentals of biostatistics. 5th ed. Florence, KY: Duxbury Resource Center; 1999.
28. Arabi A, Baddoura R, Awada H, et al. Discriminative ability of dual-energy X-ray absorptiometry site selection in identifying patients with osteoporotic fractures. Bone 2007;40:1060-5.
https://doi.org/10.1016/j.bone.2006.11.017.
29. Leslie WD, Martineau P, Bryanton M, et al. Which is the preferred site for bone mineral density monitoring as an indicator of treatment-related anti-fracture effect in routine clinical practice? A registry-based cohort study. Osteoporos Int 2019;30:1445-53.
https://doi.org/10.1007/s00198-019-04975-y.
32. Choi MS, Park HJ, Kim SR, et al. Long-term dietary supplementation with Yerba Mate ameliorates diet-induced obesity and metabolic disorders in mice by regulating energy expenditure and lipid metabolism. J Med Food 2017;20:1168-75.
https://doi.org/10.1089/jmf.2017.3995.
33. Dos Santos TW, Miranda J, Teixeira L, et al. Yerba mate stimulates mitochondrial biogenesis and thermogenesis in high-fat-diet-induced obese mice. Mol Nutr Food Res 2018;62:e1800142.
https://doi.org/10.1002/mnfr.201800142.
34. Tolouei SEL, Marcon R, Vilela FC, et al. Preclinical development of a standardized extract of Ilex paraguariensis A.St. Hil for the treatment of obesity and metabolic syndrome. Pharmacol Res 2025;213:107607.
https://doi.org/10.1016/j.phrs.2025.107607.
35. Kudo M, Gao M, Hayashi M, et al. Ilex paraguariensis A.St. Hil. improves lipid metabolism in high-fat diet-fed obese rats and suppresses intracellular lipid accumulation in 3T3-L1 adipocytes via the AMPK-dependent and insulin signaling pathways. Food Nutr Res 2024;
https://doi.org/10.29219/fnr.v68.10307.
36. Kuchuk NO, Pluijm SM, van Schoor NM, et al. Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab 2009;94:1244-50.
https://doi.org/10.1210/jc.2008-1832.
37. Qazzaz ME, Abed MN, Alassaf FA, et al. Insights into the perspective correlation between vitamin D and regulation of hormones: sex hormones and prolactin. Curr Issues Pharm Med Sci 2021;34:192-200.
https://doi.org/10.2478/cipms-2021-0035.
38. Płatkiewicz J, Okołowicz D, Frankowski R, et al. Antioxidant capacity, phenolic compounds, and other constituents of cold and hot Yerba Mate (Ilex paraguariensis) infusions. Antioxidants (Basel) 2024;13:1467.
https://doi.org/10.3390/antiox13121467.
39. Trzeciakiewicz A, Habauzit V, Horcajada MN. When nutrition interacts with osteoblast function: Molecular mechanisms of polyphenols. Nutr Res Rev 2009;22:68-81.
https://doi.org/10.1017/s095442240926402x.
41. Kwak SC, Lee C, Kim JY, et al. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by downregulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression. Biol Pharm Bull 2013;36:1779-86.
https://doi.org/10.1248/bpb.b13-00430.
42. Pereira CS, Stringhetta-Garcia CT, da Silva Xavier L, et al. llex paraguariensis decreases oxidative stress in bone and mitigates the damage in rats during perimenopause. Exp Gerontol 2017;98:148-52.
https://doi.org/10.1016/j.exger.2017.07.006.
43. Brasilino MDS, Stringhetta-Garcia CT, Pereira CS, et al. Mate tea (Ilex paraguariensis) improves bone formation in the alveolar socket healing after tooth extraction in rats. Clin Oral Investig 2018;22:1449-61.
https://doi.org/10.1007/s00784-017-2249-1.
44. Alnaser RI, Alassaf FA, Abed MN. Incretin-based therapies: A promising approach for modulating oxidative stress and insulin resistance in sarcopenia. J Bone Metab 2024;31:251-63.
https://doi.org/10.11005/jbm.24.739.
45. Cooper-Leavitt ET, Shin MJ, Beus CG, et al. The incretin effect of Yerba Maté (Ilex paraguariensis) Is partially dependent on gut-mediated metabolism of ferulic acid. Nutrients 2025;17:625.
https://doi.org/10.3390/nu17040625.
46. Balera Brito VG, Chaves-Neto AH, Landim de Barros T, et al. Soluble yerba mate (Ilex Paraguariensis) extract enhances in vitro osteoblastic differentiation of bone marrow-derived mesenchymal stromal cells. J Ethnopharmacol 2019;244:112131.
https://doi.org/10.1016/j.jep.2019.112131.
47. Ceverino GC, Sanchez PKV, Fernandes RR, et al. Preadministration of yerba mate (Ilex paraguariensis) helps functional activity and morphology maintenance of MC3T3-E1 osteoblastic cells after in vitro exposition to hydrogen peroxide. Mol Biol Rep 2021;48:13-20.
https://doi.org/10.1007/s11033-020-06096-w.
48. Villarreal L, Sanz N, Fagalde FB, et al. Increased osteoblastic and osteocytic in vitro cell viability by Yerba Mate (Ilex paraguariensis). J Bone Metab 2024;31:101-13.
https://doi.org/10.11005/jbm.2024.31.2.101.
49. da Veiga DTA, Bringhenti R, Bolignon AA, et al. The yerba mate intake has a neutral effect on bone: A case-control study in postmenopausal women. Phytother Res 2018;32:58-64.
https://doi.org/10.1002/ptr.5947.
50. Brance ML, Saraví FD, Henríquez MM, et al. Age- and sex-related volumetric density differences in trabecular and cortical bone of the proximal femur in healthy population. J Bone Metab 2024;31:279-89.
https://doi.org/10.11005/jbm.24.765.