3. Rauner M, Hofbauer LC. Basics of bone biology. In: Pietschmann P, editors. Principles of osteoimmunology: Molecular mechanisms and clinical applications. 2nd ed. Cham, CH: Springer, Cham; 2016. p.1. -30.
7. Wang YP, Khelifi N, Halleux C, et al. Bone marrow adiposity, bone mineral density and Wnt/β-catenin pathway inhibitors levels in hemodialysis patients. J Bone Metab 2022;29:113-22.
https://doi.org/10.11005/jbm.2022.29.2.113.
8. Justesen J, Stenderup K, Ebbesen EN, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001;2:165-71.
https://doi.org/10.1023/a:1011513223894.
12. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016;4:16009.
https://doi.org/10.1038/boneres.2016.9.
14. Zhou H, Zhang L, Chen Y, et al. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif 2022;55:e13162.
https://doi.org/10.1111/cpr.13162.
15. Deng Q, Li P, Che M, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. Elife 2019;8:e50208.
https://doi.org/10.7554/eLife.50208.
17. Maruyama T, Mirando AJ, Deng CX, et al. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci Signal 2010;3:ra40.
https://doi.org/10.1126/scisignal.2000727.
18. Ng F, Boucher S, Koh S, et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 2008;112:295-307.
https://doi.org/10.1182/blood-2007-07-103697.
20. Bennett JH, Joyner CJ, Triffitt JT, et al. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 1991;99(Pt 1):131-9.
https://doi.org/10.1242/jcs.99.1.131.
21. Beresford JN, Bennett JH, Devlin C, et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992;102(Pt 2):341-51.
https://doi.org/10.1242/jcs.102.2.341.
22. Sardar A, Ansari A, Gupta S, et al. Design, synthesis and biological evaluation of new quinazolinone-benzopyran-indole hybrid compounds promoting osteogenesis through BMP2 upregulation. Eur J Med Chem 2022;244:114813.
https://doi.org/10.1016/j.ejmech.2022.114813.
23. Rai D, Sardar A, Raj A, et al. miR4352b a cross-species modulator of SOSTDC1, targets dual pathway to regulate bone health and fracture healing. Biochim Biophys Acta Mol Basis Dis 2025;1871:167514.
https://doi.org/10.1016/j.bbadis.2024.167514.
24. Tripathi AK, Sardar A, Rai N, et al. Withaferin A ameliorated the bone marrow fat content in obese male mice by favoring osteogenesis in bone marrow mesenchymal stem cells and preserving the bone mineral density. ACS Pharmacol Transl Sci 2024;7:2621-36.
https://doi.org/10.1021/acsptsci.3c00356.
25. Sardar A, Gautam S, Sinha S, et al. Nanoparticles of naturally occurring PPAR-γ inhibitor betulinic acid ameliorates bone marrow adiposity and pathological bone loss in ovariectomized rats via Wnt/β-catenin pathway. Life Sci 2022;309:121020.
https://doi.org/10.1016/j.lfs.2022.121020.
26. Kothari P, Dhaniya G, Sardar A, et al. A glucuronated flavone TMMG spatially targets chondrocytes to alleviate cartilage degeneration through negative regulation of IL-1β. Biomed Pharmacother 2023;163:114809.
https://doi.org/10.1016/j.biopha.2023.114809.
27. Zhang B, Liu N, Shi H, et al. High glucose microenvironments inhibit the proliferation and migration of bone mesenchymal stem cells by activating GSK3β. J Bone Miner Metab 2016;34:140-50.
https://doi.org/10.1007/s00774-015-0662-6.
28. Nengroo MA, Maheshwari S, Singh A, et al. CXCR4 intracellular protein promotes drug resistance and tumorigenic potential by inversely regulating The expression of death receptor 5. Cell Death Dis 2021;12:464.
https://doi.org/10.1038/s41419-021-03730-8.
29. Shukla RP, Tiwari P, Sardar A, et al. Alendronate-functionalized porous nano-crystalsomes mitigate osteolysis and consequent inhibition of tumor growth in a tibia-induced metastasis model. J Control Release 2024;372:331-46.
https://doi.org/10.1016/j.jconrel.2024.06.009.
30. Sardar A, Rai D, Tripathi AK, et al. FDA-approved polypeptide PTH 1-34 impedes palmitic acid-mediated osteoblasts dysfunction by promoting its differentiation and thereby improving skeletal health. Mol Cell Endocrinol 2025;597:112445.
https://doi.org/10.1016/j.mce.2024.112445.
33. Petrenko Y, Vackova I, Kekulova K, et al. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci Rep 2020;10:4290.
https://doi.org/10.1038/s41598-020-61167-z.
34. Purwaningrum M, Jamilah NS, Purbantoro SD, et al. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J Vet Sci 2021;22:e74.
https://doi.org/10.4142/jvs.2021.22.e74.
35. Fitzsimmons REB, Mazurek MS, Soos A, et al. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int 2018;2018:8031718.
https://doi.org/10.1155/2018/8031718.
36. Zhao L, Li G, Chan KM, et al. Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2. Calcif Tissue Int 2009;84:56-64.
https://doi.org/10.1007/s00223-008-9189-3.
37. Mie M, Ohgushi H, Yanagida Y, et al. Osteogenesis coordinated in C3H10T1/2 cells by adipogenesis-dependent BMP-2 expression system. Tissue Eng 2000;6:9-18.
https://doi.org/10.1089/107632700320847.
39. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:765-71.
https://doi.org/10.1016/s0092-8674(00)80259-7.
41. Beresford JN, Graves SE, Smoothy CA. Formation of mineralized nodules by bone derived cells in vitro: A model of bone formation? Am J Med Genet 1993;45:163-78.
https://doi.org/10.1002/ajmg.1320450205.
42. Thiam AR, Farese RV Jr, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 2013;14:775-86.
https://doi.org/10.1038/nrm3699.
45. Gu F, Zhang K, Li J, et al. Changes of migration, immunoregulation and osteogenic differentiation of mesenchymal stem cells in different stages of inflammation. Int J Med Sci 2022;19:25-33.
https://doi.org/10.7150/ijms.58428.
47. De Clercq E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 2019;27:2040206619829382.
https://doi.org/10.1177/2040206619829382.
48. Kim HY, Hwang JY, Kim SW, et al. The CXCR4 antagonist AMD3100 has dual effects on survival and proliferation of myeloma cells In vitro. Cancer Res Treat 2010;42:225-34.
https://doi.org/10.4143/crt.2010.42.4.225.