4. Elefteriou F, Kolanczyk M, Schindeler A, et al. Skeletal abnormalities in neurofibromatosis type 1: Approaches to therapeutic options. Am J Med Genet A 2009;149a:2327-38.
https://doi.org/10.1002/ajmg.a.33045.
7. Stevenson DA, Yan J, He Y, et al. Multiple increased osteoclast functions in individuals with neurofibromatosis type 1. Am J Med Genet A 2011;155a:1050-9.
https://doi.org/10.1002/ajmg.a.33965.
9. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996;348:1535-41.
https://doi.org/10.1016/s0140-6736(96)07088-2.
10. Paley D. Congenital pseudarthrosis of the tibia: Combined pharmacologic and surgical treatment using biphosphonate intravenous infusion and bone morphogenic protein with periosteal and cancellous autogenous bone grafting, tibio-fibular cross union, intramedullary rodding and external fixation. In: Zorzi A, editors. Bone grafting. London, UK: InTech; 2012. p.91. -106.
11. Heervä E. Bone health, osteoporosis and fracture risk in neurofibromatosis 1 An emphasis on osteoclasts. Turku, FI: University of Turku; 2012.
12. Birke O, Schindeler A, Ramachandran M, et al. Preliminary experience with the combined use of recombinant bone morphogenetic protein and bisphosphonates in the treatment of congenital pseudarthrosis of the tibia. J Child Orthop 2010;4:507-17.
https://doi.org/10.1007/s11832-010-0293-3.
13. Wu X, Estwick SA, Chen S, et al. Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. Hum Mol Genet 2006;15:2837-45.
https://doi.org/10.1093/hmg/ddl208.
14. Yang FC, Chen S, Robling AG, et al. Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest 2006;116:2880-91.
https://doi.org/10.1172/jci29092.
15. Kolanczyk M, Kossler N, Kühnisch J, et al. Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet 2007;16:874-86.
https://doi.org/10.1093/hmg/ddm032.
16. Elefteriou F, Benson MD, Sowa H, et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 2006;4:441-51.
https://doi.org/10.1016/j.cmet.2006.10.010.
17. Kuorilehto T, Pöyhönen M, Bloigu R, et al. Decreased bone mineral density and content in neurofibromatosis type 1: Lowest local values are located in the load-carrying parts of the body. Osteoporos Int 2005;16:928-36.
https://doi.org/10.1007/s00198-004-1801-4.
18. Riccardi C, Perrone L, Napolitano F, et al. Understanding the biological activities of vitamin D in type 1 neurofibromatosis: New insights into disease pathogenesis and therapeutic design. Cancers (Basel) 2020;12:2965.
https://doi.org/10.3390/cancers12102965.
20. Kluwe L, Hagel C, Friedrich RE, et al. Vitamin D receptor expression and serum 25(OH)D concentration inversely associates with burden of neurofibromas. Eur J Cancer Prev 2019;28:220-4.
https://doi.org/10.1097/cej.0000000000000467.
21. Heervä E, Peltonen S, Svedström E, et al. Osteoclasts derived from patients with neurofibromatosis 1 (NF1) display insensitivity to bisphosphonates in vitro. Bone 2012;50:798-803.
https://doi.org/10.1016/j.bone.2011.12.011.
22. Filopanti M, Verga U, Ulivieri FM, et al. Trabecular bone score (TBS) and bone metabolism in patients affected with type 1 neurofibromatosis (NF1). Calcif Tissue Int 2019;104:207-13.
https://doi.org/10.1007/s00223-018-0488-z.
23. Kaspiris A, Savvidou OD, Vasiliadis ES, et al. Current aspects on the pathophysiology of bone metabolic defects during progression of scoliosis in neurofibromatosis type 1. J Clin Med 2022;11:444.
https://doi.org/10.3390/jcm11020444.
24. Lodish MB, Dagalakis U, Sinaii N, et al. Bone mineral density in children and young adults with neurofibromatosis type 1. Endocr Relat Cancer 2012;19:817-25.
https://doi.org/10.1530/erc-12-0293.
25. Heervä E, Koffert A, Jokinen E, et al. A controlled register-based study of 460 neurofibromatosis 1 patients: Increased fracture risk in children and adults over 41 years of age. J Bone Miner Res 2012;27:2333-7.
https://doi.org/10.1002/jbmr.1685.
31. Ooi HL, Briody J, Biggin A, et al. Intravenous zoledronic acid given every 6 months in childhood osteoporosis. Horm Res Paediatr 2013;80:179-84.
https://doi.org/10.1159/000354303.
32. Heervä E, Huilaja L, Leinonen P, et al. Follow-up of six patients with neurofibromatosis 1-related osteoporosis treated with alendronate for 23 months. Calcif Tissue Int 2014;94:608-12.
https://doi.org/10.1007/s00223-013-9835-2.
33. Schindeler A, Ramachandran M, Godfrey C, et al. Modeling bone morphogenetic protein and bisphosphonate combination therapy in wild-type and Nf1 haploinsufficient mice. J Orthop Res 2008;26:65-74.
https://doi.org/10.1002/jor.20481.
34. Schindeler A, Birke O, Yu NY, et al. Distal tibial fracture repair in a neurofibromatosis type 1-deficient mouse treated with recombinant bone morphogenetic protein and a bisphosphonate. J Bone Joint Surg Br 2011;93:1134-9.
https://doi.org/10.1302/0301-620x.93b8.25940.
35. Deo N, Cheng TL, Mikulec K, et al. Improved union and bone strength in a mouse model of NF1 pseudarthrosis treated with recombinant human bone morphogenetic protein-2 and zoledronic acid. J Orthop Res 2018;36:930-6.
https://doi.org/10.1002/jor.23672.
36. Harindhanavudhi T, Takahashi T, Petryk A, et al. An adjunctive use of asfotase alfa and zoledronic acid after spinal surgery in neurofibromatosis type 1 related dystrophic scoliosis. AACE Clin Case Rep 2020;6:e305-e10.
https://doi.org/10.4158/accr-2020-0222.