1. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011;79:1370-8.
https://doi.org/10.1038/ki.2011.47.
2. Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69:1945-53.
https://doi.org/10.1038/sj.ki.5000414.
4. Vilaca T, Salam S, Schini M, et al. Risks of hip and nonvertebral fractures in patients with CKD G3a-G5D: A systematic review and meta-analysis. Am J Kidney Dis 2020;76:521-32.
https://doi.org/10.1053/j.ajkd.2020.02.450.
5. Tentori F, McCullough K, Kilpatrick RD, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 2014;85:166-73.
https://doi.org/10.1038/ki.2013.279.
6. Barrera-Baena P, Rodríguez-García M, Rodríguez-Rubio E, et al. Serum phosphate is associated with increased risk of bone fragility fractures in hemodialysis patients. Nephrol Dial Transplant 2023;39:618-26.
https://doi.org/10.1093/ndt/gfad190.
7. Evenepoel P, D’Haese P, Bacchetta J, et al. Bone biopsy practice patterns across Europe: The European renal osteodystrophy initiative-a position paper. Nephrol Dial Transplant 2017;32:1608-13.
https://doi.org/10.1093/ndt/gfw468.
8. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl (2011) 2017;7:1-59.
https://doi.org/10.1016/j.kisu.2017.04.001.
9. Aguilar A, Gifre L, Ureña-Torres P, et al. Pathophysiology of bone disease in chronic kidney disease: From basics to renal osteodystrophy and osteoporosis. Front Physiol 2023;14:1177829.
https://doi.org/10.3389/fphys.2023.1177829.
10. Ben-awadh AN, Delgado-Calle J, Tu X, et al. Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes. Endocrinology 2014;155:2797-809.
https://doi.org/10.1210/en.2014-1046.
12. Kritmetapak K, Losbanos LA, Hines JM, et al. Chemical Characterization and Quantification of Circulating Intact PTH and PTH Fragments by High-Resolution Mass Spectrometry in Chronic Renal Failure. Clin Chem 2021;67:843-53.
https://doi.org/10.1093/clinchem/hvab013.
13. Souberbielle JC, Boutten A, Carlier MC, et al. Inter-method variability in PTH measurement: Implication for the care of CKD patients. Kidney Int 2006;70:345-50.
https://doi.org/10.1038/sj.ki.5001606.
14. Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 2016;67:559-66.
https://doi.org/10.1053/j.ajkd.2015.06.023.
15. D’Amour P, Brossard JH, Rousseau L, et al. Amino-terminal form of parathyroid hormone (PTH) with immunologic similarities to hPTH(1-84) is overproduced in primary and secondary hyperparathyroidism. Clin Chem 2003;49:2037-44.
https://doi.org/10.1373/clinchem.2003.021592.
16. Arakawa T, D’Amour P, Rousseau L, et al. Overproduction and secretion of a novel amino-terminal form of parathyroid hormone from a severe type of parathyroid hyperplasia in uremia. Clin J Am Soc Nephrol 2006;1:525-31.
https://doi.org/10.2215/cjn.01391005.
18. Ursem SR, Heijboer AC, D’Haese PC, et al. Non-oxidized parathyroid hormone (PTH) measured by current method is not superior to total PTH in assessing bone turnover in chronic kidney disease. Kidney Int 2021;99:1173-8.
https://doi.org/10.1016/j.kint.2020.12.024.
19. Cavalier E, Farré-Segura J, Lukas P, et al. Unveiling a new era with liquid chromatography coupled with mass spectrometry to enhance parathyroid hormone measurement in patients with chronic kidney disease. Kidney Int 2024;105:338-46.
https://doi.org/10.1016/j.kint.2023.09.033.
20. Wesseling-Perry K, Harkins GC, Wang HJ, et al. The calcemic response to continuous parathyroid hormone (PTH) (1-34) infusion in end-stage kidney disease varies according to bone turnover: A potential role for PTH(7-84). J Clin Endocrinol Metab 2010;95:2772-80.
https://doi.org/10.1210/jc.2009-1909.
21. Quarles LD, Lobaugh B, Murphy G. Intact parathyroid hormone overestimates the presence and severity of parathyroid-mediated osseous abnormalities in uremia. J Clin Endocrinol Metab 1992;75:145-50.
https://doi.org/10.1210/jcem.75.1.1619003.
22. Evenepoel P, Jørgensen HS. Skeletal parathyroid hormone hyporesponsiveness: A neglected, but clinically relevant reality in chronic kidney disease. Curr Opin Nephrol Hypertens 2024;33:383-90.
https://doi.org/10.1097/mnh.0000000000000992.
23. Yamamoto S, Jørgensen HS, Zhao J, et al. Alkaline phosphatase and parathyroid hormone levels: International variation and associations with clinical outcomes in the DOPPS. Kidney Int Rep 2024;9:863-76.
https://doi.org/10.1016/j.ekir.2024.01.002.
24. Evenepoel P, Jørgensen HS, Komaba H, et al. Lower bone turnover and skeletal PTH responsiveness in Japanese compared to European patients on hemodialysis. J Clin Endocrinol Metab 2022;107:e4350-e4359.
https://doi.org/10.1210/clinem/dgac522.
25. Sawaya BP, Butros R, Naqvi S, et al. Differences in bone turnover and intact PTH levels between African American and Caucasian patients with end-stage renal disease. Kidney Int 2003;64:737-42.
https://doi.org/10.1046/j.1523-1755.2003.00129.x.
27. Vasikaran S, Cooper C, Eastell R, et al. International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 2011;49:1271-4.
https://doi.org/10.1515/cclm.2011.602.
28. Tridimas A, Milan A, Marks E. Assessing bone formation in patients with chronic kidney disease using procollagen type I N-terminal propeptide (PINP): The choice of assay makes a difference. Ann Clin Biochem 2021;58:528-36.
https://doi.org/10.1177/00045632211025567.
29. Yamada S, Inaba M, Kurajoh M, et al. Utility of serum tartrate-resistant acid phosphatase (TRACP5b) as a bone resorption marker in patients with chronic kidney disease: Independence from renal dysfunction. Clin Endocrinol (Oxf) 2008;69:189-96.
https://doi.org/10.1111/j.1365-2265.2008.03187.x.
30. Neto R, Pereira L, Magalhães J, et al. Sclerostin and DKK1 circulating levels associate with low bone turnover in patients with chronic kidney disease Stages 3 and 4. Clin Kidney J 2021;14:2401-8.
https://doi.org/10.1093/ckj/sfab081.
31. Malluche HH, Mawad HW, Monier-Faugere MC. Renal osteodystrophy in the first decade of the new millennium: Analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 2011;26:1368-76.
https://doi.org/10.1002/jbmr.309.
33. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009;S1-S130.
https://doi.org/10.1038/ki.2009.188.
34. Salam S, Gallagher O, Gossiel F, et al. Diagnostic accuracy of biomarkers and imaging for bone turnover in renal osteodystrophy. J Am Soc Nephrol 2018;29:1557-65.
https://doi.org/10.1681/asn.2017050584.
35. Lima F, Mawad H, El-Husseini AA, et al. Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers. Clin Nephrol 2019;91:222-30.
https://doi.org/10.5414/cn109650.
40. Nakagawa Y, Komaba H, Hamano N, et al. Interrelationships between sclerostin, secondary hyperparathyroidism, and bone metabolism in patients on hemodialysis. J Clin Endocrinol Metab 2022;107:e95-e105.
https://doi.org/10.1210/clinem/dgab623.
41. Jørgensen HS, Winther S, Bøttcher M, et al. Bone turnover markers are associated with bone density, but not with fracture in end stage kidney disease: A cross-sectional study. BMC Nephrol 2017;18:284.
https://doi.org/10.1186/s12882-017-0692-5.
42. Xu Y, Evans M, Soro M, et al. Secondary hyperparathyroidism and adverse health outcomes in adults with chronic kidney disease. Clin Kidney J 2021;14:2213-20.
https://doi.org/10.1093/ckj/sfab006.
43. Geng S, Kuang Z, Peissig PL, et al. Parathyroid hormone independently predicts fracture, vascular events, and death in patients with stage 3 and 4 chronic kidney disease. Osteoporos Int 2019;30:2019-25.
https://doi.org/10.1007/s00198-019-05033-3.
47. Iimori S, Mori Y, Akita W, et al. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients-a single-center cohort study. Nephrol Dial Transplant 2012;27:345-51.
https://doi.org/10.1093/ndt/gfr317.
48. Maruyama Y, Taniguchi M, Kazama JJ, et al. A higher serum alkaline phosphatase is associated with the incidence of hip fracture and mortality among patients receiving hemodialysis in Japan. Nephrol Dial Transplant 2014;29:1532-8.
https://doi.org/10.1093/ndt/gfu055.
49. Coen G, Ballanti P, Mantella D, et al. Bone turnover, osteopenia and vascular calcifications in hemodialysis patients. A histomorphometric and multislice CT study. Am J Nephrol 2009;29:145-52.
https://doi.org/10.1159/000151769.
51. Sumida K, Ubara Y, Hoshino J, et al. Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: A prospective study. Osteoporos Int 2016;27:1441-50.
https://doi.org/10.1007/s00198-015-3377-6.
52. Yamamoto J, Nakazawa D, Nishio S, et al. Impact of weekly teriparatide on the bone and mineral metabolism in hemodialysis patients with relatively low serum parathyroid hormone: A pilot study. Ther Apher Dial 2020;24:146-53.
https://doi.org/10.1111/1744-9987.12867.
53. Mitsopoulos E, Ginikopoulou E, Economidou D, et al. Impact of long-term cinacalcet, ibandronate or teriparatide therapy on bone mineral density of hemodialysis patients: A pilot study. Am J Nephrol 2012;36:238-44.
https://doi.org/10.1159/000341864.
54. Chen CL, Chen NC, Liang HL, et al. Effects of denosumab and calcitriol on severe secondary hyperparathyroidism in dialysis patients with low bone mass. J Clin Endocrinol Metab 2015;100:2784-92.
https://doi.org/10.1210/jc.2015-1259.
57. Iseri K, Watanabe M, Yoshikawa H, et al. Effects of denosumab and alendronate on bone health and vascular function in hemodialysis patients: A randomized, controlled trial. J Bone Miner Res 2019;34:1014-24.
https://doi.org/10.1002/jbmr.3676.
58. Miller PD, Adachi JD, Albergaria BH, et al. Efficacy and safety of romosozumab among postmenopausal women with osteoporosis and mild-to-moderate chronic kidney disease. J Bone Miner Res 2022;37:1437-45.
https://doi.org/10.1002/jbmr.4563.
59. Bilezikian JP, Hattersley G, Mitlak BH, et al. Abaloparatide in patients with mild or moderate renal impairment: Results from the ACTIVE phase 3 trial. Curr Med Res Opin 2019;35:2097-102.
https://doi.org/10.1080/03007995.2019.1656955.
60. Miller PD, Schwartz EN, Chen P, et al. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int 2007;18:59-68.
https://doi.org/10.1007/s00198-006-0189-8.
61. Miller PD, Roux C, Boonen S, et al. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: A pooled analysis of nine clinical trials. J Bone Miner Res 2005;20:2105-15.
https://doi.org/10.1359/jbmr.050817.
62. Ishani A, Paudel M, Taylor BC, et al. Renal function and rate of hip bone loss in older men: The Osteoporotic Fractures in Men Study. Osteoporos Int 2008;19:1549-56.
https://doi.org/10.1007/s00198-008-0608-0.
63. Hara T, Hijikata Y, Matsubara Y, et al. Pharmacological interventions versus placebo, no treatment or usual care for osteoporosis in people with chronic kidney disease stages 3-5D. Cochrane Database Syst Rev 2021 7:CD013424.
https://doi.org/10.1002/14651858.CD013424.pub2.
64. Malluche HH, Davenport DL, Monier-Faugere MC, et al. Treatment of bone loss in CKD5D: Better survival in patients with non-high bone turnover. Clin Nephrol 2022;98:219-28.
https://doi.org/10.5414/cn110993.
65. Jørgensen HS, Borghs H, Heye S, et al. Vascular calcification of the abdominal aorta has minimal impact on lumbar spine bone density in patients with chronic kidney disease. Bone 2022;162:116482.
https://doi.org/10.1016/j.bone.2022.116482.
66. Robinson DE, Ali MS, Pallares N, et al. Safety of oral bisphosphonates in moderate-to-severe chronic kidney disease: A binational cohort analysis. J Bone Miner Res 2021;36:820-32.
https://doi.org/10.1002/jbmr.4235.
67. Ali MS, Ernst M, Robinson DE, et al. Alendronate use and bone mineral density gains in women with moderate-severe (stages 3B-5) chronic kidney disease: An open cohort multivariable and propensity score analysis from Funen, Denmark. Arch Osteoporos 2020;15:81.
https://doi.org/10.1007/s11657-020-00746-z.
68. Bergner R, Henrich D, Hoffmann M, et al. Treatment of reduced bone density with ibandronate in dialysis patients. J Nephrol 2008;21:510-6.
69. Iseri K, Watanabe M, Lee XP, et al. Elimination of intravenous alendronate by hemodialysis: A kinetic study. Hemodial Int 2019;23:466-71.
https://doi.org/10.1111/hdi.12773.
70. Bergner R, Dill K, Boerner D, et al. Elimination of intravenously administered ibandronate in patients on haemodialysis: A monocentre open study. Nephrol Dial Transplant 2002;17:1281-5.
https://doi.org/10.1093/ndt/17.7.1281.
71. Block GA, Bone HG, Fang L, et al. A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 2012;27:1471-9.
https://doi.org/10.1002/jbmr.1613.
72. Hiramatsu R, Ubara Y, Sawa N, et al. Hypocalcemia and bone mineral changes in hemodialysis patients with low bone mass treated with denosumab: A 2-year observational study. Nephrol Dial Transplant 2021;36:1900-7.
https://doi.org/10.1093/ndt/gfaa359.
73. Kato K, Yaginuma T, Kobayashi A, et al. Long-term effects of denosumab on bone mineral density and turnover markers in patients undergoing hemodialysis. J Bone Miner Metab 2024;42:264-70.
https://doi.org/10.1007/s00774-024-01505-7.
74. Kim H, Lee EJ, Woo S, et al. Effect of denosumab on bone health, vascular calcification, and health-related quality of life in hemodialysis patients with osteoporosis: A prospective observational study. J Clin Med 2024;13:1462.
https://doi.org/10.3390/jcm13051462.
76. Saito T, Mizobuchi M, Kato T, et al. One-year romosozumab treatment followed by one-year denosumab treatment for osteoporosis in patients on hemodialysis: An observational study. Calcif Tissue Int 2023;112:34-44.
https://doi.org/10.1007/s00223-022-01031-6.
78. Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 2017;377:1417-27.
https://doi.org/10.1056/NEJMoa1708322.
79. Ingle BM, Hay SM, Bottjer HM, et al. Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int 1999;10:399-407.
https://doi.org/10.1007/s001980050246.
80. Gentry J, Webb J, Davenport D, et al. Serum phosphorus adds to value of serum parathyroid hormone for assessment of bone turnover in renal osteodystrophy. Clin Nephrol 2016;86:9-17.
https://doi.org/10.5414/cn108823.
81. Pereira L, Magalhães J, Mendonça L, et al. Evaluation of renal osteodystrophy and serum bone-related biomarkers in a peritoneal dialysis population. J Bone Miner Res 2022;37:1689-99.
https://doi.org/10.1002/jbmr.4636.
82. Vrist MH, Østergaard AMH, Langaa SS, et al. Bone turnover, mineralization, and volume estimated by 18F-sodium fluoride PET/CT and biomarkers in chronic kidney disease: Mineral and bone disorder compared with bone biopsy. Am J Nephrol 2022;53:490-502.
https://doi.org/10.1159/000524961.
83. de Oliveira RA, Barreto FC, Mendes M, et al. Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int 2015;87:1039-45.
https://doi.org/10.1038/ki.2014.372.