2. Broy SB, Cauley JA, Lewiecki ME, et al. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 1: Hip geometry. J Clin Densitom 2015;18:287-308.
https://doi.org/10.1016/j.jocd.2015.06.005.
3. Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab 2016;14:133-49.
https://doi.org/10.1007/s12018-016-9222-4.
5. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int 2007;18:427-44.
https://doi.org/10.1007/s00198-006-0253-4.
7. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 2010;21:195-214.
https://doi.org/10.1007/s00198-009-1066-z.
8. Deeba F, Younis S, Qureshi N, et al. Effect of diabetes mellitus and anti-diabetic drugs on bone health: a review. J Bioresour Manag 2021;8:131-48.
https://doi.org/10.35691/JBM.1202.0187.
9. Johnston SS, Conner C, Aagren M, et al. Association between hypoglycaemic events and fall-related fractures in Medicare-covered patients with type 2 diabetes. Diabetes Obes Metab 2012;14:634-43.
https://doi.org/10.1111/j.1463-1326.2012.01583.x.
10. Cavati G, Pirrotta F, Merlotti D, et al. Role of advanced glycation end-products and oxidative stress in type-2-diabetes-induced bone fragility and implications on fracture risk stratification. Antioxidants (Basel) 2023;12:928.
https://doi.org/10.3390/antiox12040928.
12. Kay AM, Simpson CL, Stewart JA Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res 2016;2016:6809703.
https://doi.org/10.1155/2016/6809703.
13. Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling. Biochem Biophys Res Commun 2012;423:684-9.
https://doi.org/10.1016/j.bbrc.2012.06.015.
14. Zhou Z, Han JY, Xi CX, et al. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Miner Res 2008;23:1084-96.
https://doi.org/10.1359/jbmr.080234.
16. Schwartz AV, Garnero P, Hillier TA, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 2009;94:2380-6.
https://doi.org/10.1210/jc.2008-2498.
17. Saito M, Mori S, Mashiba T, et al. Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 2008;19:1343-54.
https://doi.org/10.1007/s00198-008-0585-3.
18. Saito M, Fujii K, Mori Y, et al. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 2006;17:1514-23.
https://doi.org/10.1007/s00198-006-0155-5.
19. Bollag RJ, Zhong Q, Phillips P, et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 2000;141:1228-35.
https://doi.org/10.1210/endo.141.3.7366.
20. Abed MN, Alassaf F, Qazzaz ME, et al. Insights into the perspective correlation between vitamin D and regulation of hormones: thyroid and parathyroid hormones. Clin Rev Bone Miner Metab 2020;18:87-93.
https://doi.org/10.1007/s12018-021-09279-6.
21. Henriksen DB, Alexandersen P, Hartmann B, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 2009;45:833-42.
https://doi.org/10.1016/j.bone.2009.07.008.
23. Kitaura H, Ogawa S, Ohori F, et al. Effects of incretin-related diabetes drugs on bone formation and bone resorption. Int J Mol Sci 2021;22:6578.
https://doi.org/10.3390/ijms22126578.
24. Hansen MSS, Tencerova M, Frølich J, et al. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism. Basic Clin Pharmacol Toxicol 2018;122:25-37.
https://doi.org/10.1111/bcpt.12850.
25. Ceccarelli E, Guarino EG, Merlotti D, et al. Beyond glycemic control in diabetes mellitus: effects of incretin-based therapies on bone metabolism. Front Endocrinol (Lausanne) 2013;4:73.
https://doi.org/10.3389/fendo.2013.00073.
28. Mieczkowska A, Irwin N, Flatt PR, et al. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone 2013;56:337-42.
https://doi.org/10.1016/j.bone.2013.07.003.
30. Gasbjerg LS, Hartmann B, Christensen MB, et al. GIP’s effect on bone metabolism is reduced by the selective GIP receptor antagonist GIP(3-30)NH(2). Bone 2020;130:115079.
https://doi.org/10.1016/j.bone.2019.115079.
32. Nuche-Berenguer B, Portal-Núñez S, Moreno P, et al. Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol 2010;225:585-92.
https://doi.org/10.1002/jcp.22243.
35. Schurman L, McCarthy AD, Sedlinsky C, et al. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 2008;116:333-40.
https://doi.org/10.1055/s-2007-992786.
36. Migoya EM, Bergeron R, Miller JL, et al. Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1. Clin Pharmacol Ther 2010;88:801-8.
https://doi.org/10.1038/clpt.2010.184.
37. Pan QR, Li WH, Wang H, et al. Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell. Horm Metab Res 2009;41:799-804.
https://doi.org/10.1055/s-0029-1234043.
38. Cuthbertson J, Patterson S, O’Harte FP, et al. Addition of metformin to exogenous glucagon-like peptide-1 results in increased serum glucagon-like peptide-1 concentrations and greater glucose lowering in type 2 diabetes mellitus. Metabolism 2011;60:52-6.
https://doi.org/10.1016/j.metabol.2010.01.001.
39. Md Isa SH, Najihah I, Nazaimoon WM, et al. Improvement in C-reactive protein and advanced glycosylation end-products in poorly controlled diabetics is independent of glucose control. Diabetes Res Clin Pract 2006;72:48-52.
https://doi.org/10.1016/j.diabres.2005.09.011.
40. Cordiner RLM, Mari A, Tura A, et al. The impact of low-dose gliclazide on the incretin effect and indices of beta-cell function. J Clin Endocrinol Metab 2021;106:2036-46.
https://doi.org/10.1210/clinem/dgab151.
42. Yamagishi S, Nakamura N, Suematsu M, et al. Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med 2015;21(Suppl 1):S32-40.
https://doi.org/10.2119/molmed.2015.00067.
44. Nakashima S, Matsui T, Takeuchi M, et al. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis. Horm Metab Res 2014;46:717-21.
https://doi.org/10.1055/s-0034-1371892.
45. Ishibashi Y, Matsui T, Maeda S, et al. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc Diabetol 2013;12:125.
https://doi.org/10.1186/1475-2840-12-125.
46. Zhang L, Li P, Tang Z, et al. Effects of GLP-1 receptor analogue liraglutide and DPP-4 inhibitor vildagliptin on the bone metabolism in ApoE(−/−) mice. Ann Transl Med 2019;7:369.
https://doi.org/10.21037/atm.2019.06.74.
47. Tsunosue M, Mashiko N, Ohta Y, et al. An alpha-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin Exp Med 2010;10:139-41.
https://doi.org/10.1007/s10238-009-0074-9.
49. Ahmed GM, Abed MN, Alassaf FA. An overview of the effects of sodium-glucose co-transporter-2 inhibitors on hematological parameters in diabetic patients. Iraqi J Pharm 2023;20:65-71.
50. Tang L, Wu Y, Tian M, et al. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am J Physiol Endocrinol Metab 2017;313:E563-E76.
https://doi.org/10.1152/ajpendo.00086.2017.
51. Ahn CH, Oh TJ, Min SH, et al. Incretin and pancreatic β-cell function in patients with type 2 diabetes. Endocrinol Metab (Seoul) 2023;38:1-9.
https://doi.org/10.3803/EnM.2023.103.
52. Martinussen C, Veedfald S, Dirksen C, et al. The effect of acute dual SGLT1/SGLT2 inhibition on incretin release and glucose metabolism after gastric bypass surgery. Am J Physiol Endocrinol Metab 2020;318:E956-E64.
https://doi.org/10.1152/ajpendo.00023.2020.
53. Tan KCB, Chow WS, Tso AWK, et al. Thiazolidinedione increases serum soluble receptor for advanced glycation end-products in type 2 diabetes. Diabetologia 2007;50:1819-25.
https://doi.org/10.1007/s00125-007-0759-0.
55. Kim SW. Triple combination therapy using metformin, thiazolidinedione, and a GLP-1 analog or DPP-IV inhibitor in patients with type 2 diabetes mellitus. Korean Diabetes J 2010;34:331-7.
https://doi.org/10.4093/kdj.2010.34.6.331.
56. Wang LX, Wang GY, Su N, et al. Effects of different doses of metformin on bone mineral density and bone metabolism in elderly male patients with type 2 diabetes mellitus. World J Clin Cases 2020;8:4010-6.
https://doi.org/10.12998/wjcc.v8.i18.4010.
57. Loh DKW, Kadirvelu A, Pamidi N. Effects of metformin on bone mineral density and adiposity-associated pathways in animal models with type 2 diabetes mellitus: a systematic review. J Clin Med 2022;11:4193.
https://doi.org/10.3390/jcm11144193.
58. Melton LJ 3rd, Leibson CL, Achenbach SJ, et al. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 2008;23:1334-42.
https://doi.org/10.1359/jbmr.080323.
59. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005;48:1292-9.
https://doi.org/10.1007/s00125-005-1786-3.
60. Driessen JH, Henry RM, van Onzenoort HA, et al. Bone fracture risk is not associated with the use of glucagon-like peptide-1 receptor agonists: a population-based cohort analysis. Calcif Tissue Int 2015;97:104-12.
https://doi.org/10.1007/s00223-015-9993-5.
61. Bunck MC, Poelma M, Eekhoff EM, et al. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. J Diabetes 2012;4:181-5.
https://doi.org/10.1111/j.1753-0407.2011.00168.x.
62. Cheng L, Hu Y, Li YY, et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2019;35:e3168.
https://doi.org/10.1002/dmrr.3168.
63. Monami M, Dicembrini I, Antenore A, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care 2011;34:2474-6.
https://doi.org/10.2337/dc11-1099.
64. Colhoun HM, Livingstone SJ, Looker HC, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia 2012;55:2929-37.
https://doi.org/10.1007/s00125-012-2668-0.
66. Bilezikian JP, Watts NB, Usiskin K, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab 2016;101:44-51.
https://doi.org/10.1210/jc.2015-1860.
67. Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2016;101:157-66.
https://doi.org/10.1210/jc.2015-3167.
68. Wikarek A, Grabarczyk M, Klimek K, et al. Effect of drugs used in pharmacotherapy of type 2 diabetes on bone density and risk of bone fractures. Medicina (Kaunas) 2024;60:393.
https://doi.org/10.3390/medicina60030393.
69. Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 2014;85:962-71.
https://doi.org/10.1038/ki.2013.356.
70. Ptaszynska A, Johnsson KM, Parikh SJ, et al. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf 2014;37:815-29.
https://doi.org/10.1007/s40264-014-0213-4.
71. Ljunggren Ö, Bolinder J, Johansson L, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab 2012;14:990-9.
https://doi.org/10.1111/j.1463-1326.2012.01630.x.
76. Paschou SA, Dede AD, Anagnostis PG, et al. Type 2 diabetes and osteoporosis: a guide to optimal management. J Clin Endocrinol Metab 2017;102:3621-34.
https://doi.org/10.1210/jc.2017-00042.
77. Lazarenko OP, Rzonca SO, Hogue WR, et al. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 2007;148:2669-80.
https://doi.org/10.1210/en.2006-1587.
79. Ahmed GM, Abed MN, Alassaf FA. Impact of calcium channel blockers and angiotensin receptor blockers on hematological parameters in type 2 diabetic patients. Naunyn Schmiedebergs Arch Pharmacol 2024;397:1817-28.
https://doi.org/10.1007/s00210-023-02731-y.
81. Liu K, Ahemaiti A, Tuernisaguli K, et al. Effect of metformin combined with DPP-4 inhibitor on alveolar bone density in patients with type 2 diabetes mellitus and chronic periodontitis. Shanghai Kou Qiang Yi Xue 2023;32:410-6.
82. Nirwan N, Vohora D. Linagliptin in combination with metformin ameliorates diabetic osteoporosis through modulating BMP-2 and sclerostin in the high-fat diet fed C57BL/6 mice. Front Endocrinol (Lausanne) 2022;13:944323.
https://doi.org/10.3389/fendo.2022.944323.
83. Bergmann NC, Lund A, Gasbjerg LS, et al. Separate and combined effects of GIP and GLP-1 infusions on bone metabolism in overweight men without diabetes. J Clin Endocrinol Metab 2019;104:2953-60.
https://doi.org/10.1210/jc.2019-00008.
84. Nauck MA, D’Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol 2022;21:169.
https://doi.org/10.1186/s12933-022-01604-7.
85. Gabe MBN, Skov-Jeppesen K, Gasbjerg LS, et al. GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment. Pharmacol Res 2022;176:106058.
https://doi.org/10.1016/j.phrs.2022.106058.
86. Guo H, Sui C, Ge S, et al. Positive association of glucagon with bone turnover markers in type 2 diabetes: a cross-sectional study. Diabetes Metab Res Rev 2022;38:e3550.
https://doi.org/10.1002/dmrr.3550.
87. Lee S, Kim YY, Lee JS, et al. Bone protective effect of a novel long-acting GLP-1/GIP/Glucagon triple agonist (HM15211) in an animal model. Diabetes 2018;67(Suppl 1):1105-P.
https://doi.org/10.2337/db18-1105-P.
88. Kim B, Kim YJ, Kim JH, et al. Melatonin protects bone microarchitecture against deterioration due to high-fat diet-induced obesity. J Bone Metab 2023;30:69-75.
https://doi.org/10.11005/jbm.2023.30.1.69.
90. Al-Dabbagh BMA, Abed MN, Mahmood NM, et al. Anti-inflammatory, antioxidant and hepatoprotective potential of milk thistle in albino rats. Lat Am J Pharm 2022;41:1832-41.
91. Kanemoto Y, Iwaki M, Sawada T, et al. Advances in the administration of vitamin D analogues to support bone health and treat chronic diseases. J Bone Metab 2023;30:219-29.
https://doi.org/10.11005/jbm.2023.30.3.219.
92. Alassaf FA, Alfahad M, Jasim MHM, et al. Insights into the perspective correlation between vitamin D and regulation of hormones: adrenal hormones and vasopressin. Lat Am J Pharm 2022;41:2242-7.
93. Owusu J, Huffman F, Liuzzi J, et al. Effect of 4000 IU vitamin D3 supplements on advanced glycation end products (AGEs) among adults with type 2 diabetes and hypovitaminosis. D Curr Dev Nutr 2020;4:Suppl 2. nzaa067_56.
https://doi.org/10.1093/cdn/nzaa067_05.
94. Ha NN, Huynh TKT, Phan NUP, et al. Synergistic effect of metformin and vitamin D(3) on osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells under high d-glucose conditions. Regen Ther 2024;25:147-56.
https://doi.org/10.1016/j.reth.2023.12.003.
95. Qazzaz ME, Abed MN, Alassaf FA, et al. Insights into the perspective correlation between vitamin D and regulation of hormones: sex hormones and prolactin. Curr Issues Pharm Med Sci 2021;34:192-200.
96. Mirhashemi SM, Rahimi F, Soleimani A, et al. Effects of omega-3 fatty acid supplementation on inflammatory cytokines and advanced glycation end products in patients with diabetic nephropathy: a randomized controlled trial. Iran J Kidney Dis 2016;10:197-204.
97. Adeyemi WJ, Olayaki LA, Abdussalam TA, et al. Co-administration of omega-3 fatty acids and metformin showed more desirable effects than the single therapy on indices of bone mineralisation but not gluco-regulatory and antioxidant markers in diabetic rats. Biomed Pharmacother 2020;121:109631.
https://doi.org/10.1016/j.biopha.2019.109631.
98. Thanoon IAJ, Jasim MHM, Abed MN, et al. Effects of omega-3 on renal function tests and uric acid level in healthy volunteers. Lat Am J Pharm 2021;40:2319-23.
99. Gonzalez JT, Stevenson EJ. Calcium co-ingestion augments postprandial glucose-dependent insulinotropic peptide(1-42), glucagon-like peptide-1 and insulin concentrations in humans. Eur J Nutr 2014;53:375-85.
https://doi.org/10.1007/s00394-013-0532-8.
100. Li XY, He R, Jiang YZ. Effect of metformin combined with calcium on the metabolism of bone in elderly type 2 diabetes patients. Shiyong Pharm Clin Remedies 2014;17:1638-41.