3. Zhao X, Patil S, Xu F, et al. Role of biomolecules in osteoclasts and their therapeutic potential for osteoporosis. Biomolecules 2021;11:747.
https://doi.org/10.3390/biom11050747.
5. Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999;190:1741-54.
https://doi.org/10.1084/jem.190.12.1741.
9. Darnay BG, Ni J, Moore PA, et al. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 1999;274:7724-31.
https://doi.org/10.1074/jbc.274.12.7724.
10. Grigoriadis AE, Wang ZQ, Cecchini MG, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994;266:443-8.
https://doi.org/10.1126/science.7939685.
11. Kim K, Kim JH, Lee J, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 2005;280:35209-16.
https://doi.org/10.1074/jbc.M505815200.
13. Rho J, Takami M, Choi Y. Osteoimmunology: Interactions of the immune and skeletal systems. Mol Cells 2004;17:1-9.
15. Nicolin V, De Tommasi N, Nori SL, et al. Modulatory effects of plant polyphenols on bone remodeling: a prospective view from the bench to bedside. Front Endocrinol (Lausanne) 2019;10:494.
https://doi.org/10.3389/fendo.2019.00494.
18. Khatib S, Faraloni C, Bouissane L. Exploring the use of iris species: antioxidant properties, phytochemistry, medicinal and industrial applications. Antioxidants (Basel) 2022;11:526.
https://doi.org/10.3390/antiox11030526.
19. Pi JH, Park JG, Jung JY, et al. Vegetation structure and flora of Iris Koreana Nakai, endemic species in Korea. J Agric Life Sci 2016;50:55-67.
22. Takami M, Cho ES, Lee SY, et al. Phosphodiesterase inhibitors stimulate osteoclast formation via TRANCE/RANKL expression in osteoblasts: possible involvement of ERK and p38 MAPK pathways. FEBS Lett 2005;579:832-8.
https://doi.org/10.1016/j.febslet.2004.12.066.
24. Yousefsani BS, Boozari M, Shirani K, et al. A review on phytochemical and therapeutic potential of Iris germanica. J Pharm Pharmacol 2021;73:611-25.
https://doi.org/10.1093/jpp/rgab008.
26. Li X, Udagawa N, Itoh K, et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 2002;143:3105-13.
https://doi.org/10.1210/endo.143.8.8954.
27. Cong Q, Jia H, Li P, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep 2017;7:45964.
https://doi.org/10.1038/srep45964.
28. Lee K, Chung YH, Ahn H, et al. Selective regulation of MAPK signaling mediates RANKL-dependent osteoclast differentiation. Int J Biol Sci 2016;12:235-45.
https://doi.org/10.7150/ijbs.13814.
30. Mansky KC, Sankar U, Han J, et al. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 2002;277:11077-83.
https://doi.org/10.1074/jbc.M111696200.
31. Matsumoto M, Kogawa M, Wada S, et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 2004;279:45969-79.
https://doi.org/10.1074/jbc.M408795200.
32. Yamashita T, Kobayashi Y, Mizoguchi T, et al. MKK6-p38 MAPK signaling pathway enhances survival but not bone-resorbing activity of osteoclasts. Biochem Biophys Res Commun 2008;365:252-7.
https://doi.org/10.1016/j.bbrc.2007.10.169.
34. Minina SA, Pryakhina NI, Chemesova II, et al. A pediatric medicinal preparation containing an extract of the milk-white iris (Iris lactea). Pharm Chem J 2008;42:37-9.
https://doi.org/10.1007/s11094-008-0053-6.
36. Kim JL, Li HM, Kim YH, et al. Osteogenic activity of yellow flag iris (Iris pseudacorus) extract modulating differentiation of osteoblasts and osteoclasts. Am J Chin Med 2012;40:1289-305.
https://doi.org/10.1142/s0192415x12500954.
38. Choi B, Weiss-Schneeweiss H, Temsch EM, et al. Genome size and chromosome number evolution in Korean Iris L. Species (Iridaceae Juss.). Plants (Basel) 2020;9:1284.
https://doi.org/10.3390/plants9101284.
39. Choi B, Ahn YE, Jang TS. Implications of foliar epidermal micromorphology using light and scanning electron microscopy: a useful tool in taxonomy of Korean irises. Microsc Res Tech 2022;85:2549-57.
https://doi.org/10.1002/jemt.24108.