2. Bell PA, Solis N, Kizhakkedathu JN, et al. Proteomic and N-Terminomic TAILS analyses of human alveolar bone proteins: Improved protein extraction methodology and LysargiNase digestion strategies increase proteome coverage and missing protein identification. J Proteome Res 2019;18:4167-79.
https://doi.org/10.1021/acs.jproteome.9b00445.
3. Safiri S, Kolahi AA, Hoy D, et al. Global, regional, and national burden of neck pain in the general population, 1990-2017: systematic analysis of the Global Burden of Disease Study 2017. BMJ 2020;368:m791.
https://doi.org/10.1136/bmj.m791.
4. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2163-96.
https://doi.org/10.1016/s0140-6736(12)61729-2.
5. Sarafrazi N, Wambogo EA, Shepherd JA. Osteoporosis or low bone mass in older adults: United States, 2017-2018. NCHS Data Brief 2021;1-8.
6. Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021;16:609.
https://doi.org/10.1186/s13018-021-02772-0.
7. Matthews KA, Xu W, Gaglioti AH, et al. Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States (2015-2060) in adults aged ≥65 years. Alzheimers Dement 2019;15:17-24.
https://doi.org/10.1016/j.jalz.2018.06.3063.
8. World Health Organization. Global status report on the public health response to dementia. Geneva, CH: World Health Organization; 2021.
11. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005;434:514-20.
https://doi.org/10.1038/nature03398.
13. Yuan J, Meloni BP, Shi T, et al. The potential influence of bone-derived modulators on the progression of Alzheimer’s disease. J Alzheimers Dis 2019;69:59-70.
https://doi.org/10.3233/jad-181249.
16. Cooper RR, Milgram JW, Robinson RA. Morphology of the osteon. An electron microscopic study. J Bone Joint Surg Am 1966;48:1239-71.
18. Tomlinson RE, Christiansen BA, Giannone AA, et al. The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol (Lausanne) 2020;11:646.
https://doi.org/10.3389/fendo.2020.00646.
19. Lorenz MR, Brazill JM, Beeve AT, et al. A neuroskeletal atlas: Spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice. J Bone Miner Res 2021;36:1012-25.
https://doi.org/10.1002/jbmr.4273.
28. Johnell O, Melton LJ 3rd, Atkinson EJ, et al. Fracture risk in patients with parkinsonism: a population-based study in Olmsted County, Minnesota. Age Ageing 1992;21:32-8.
https://doi.org/10.1093/ageing/21.1.32.
29. Melton LJ 3rd, Leibson CL, Achenbach SJ, et al. Fracture risk after the diagnosis of Parkinson’s disease: Influence of concomitant dementia. Mov Disord 2006;21:1361-7.
https://doi.org/10.1002/mds.20946.
30. Huang SW, Wang WT, Chou LC, et al. Osteoarthritis increases the risk of dementia: a nationwide cohort study in Taiwan. Sci Rep 2015;5:10145.
https://doi.org/10.1038/srep10145.
31. Nüesch E, Dieppe P, Reichenbach S, et al. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ 2011;342:d1165.
https://doi.org/10.1136/bmj.d1165.
35. Bae IS, Kim JM, Cheong JH, et al. Association between bone mineral density and brain parenchymal atrophy and ventricular enlargement in healthy individuals. Aging (Albany NY) 2019;11:8217-38.
https://doi.org/10.18632/aging.102316.
36. Weber A, Mak SH, Berenbaum F, et al. Association between osteoarthritis and increased risk of dementia: A systemic review and meta-analysis. Medicine (Baltimore) 2019;98:e14355.
https://doi.org/10.1097/md.0000000000014355.
37. Taylor CA, Bouldin ED, Greenlund KJ, et al. Comorbid chronic conditions among older adults with subjective cognitive decline, United States, 2015-2017. Innov Aging 2020 4:igz045.
https://doi.org/10.1093/geroni/igz045.
38. Innes KE, Sambamoorthi U. The association of perceived memory loss with osteoarthritis and related joint pain in a large appalachian population. Pain Med 2018;19:1340-56.
https://doi.org/10.1093/pm/pnx107.
39. Ikram M, Innes K, Sambamoorthi U. Association of osteoarthritis and pain with Alzheimer’s Diseases and Related Dementias among older adults in the United States. Osteoarthritis Cartilage 2019;27:1470-80.
https://doi.org/10.1016/j.joca.2019.05.021.
40. Wu L, Wang X, Ye Y, et al. Association of osteoarthritis with changes in structural neuroimaging markers over time among non-demented older adults. Front Aging Neurosci 2021;13:664443.
https://doi.org/10.3389/fnagi.2021.664443.
41. Kwon MJ, Kim JH, Kim JH, et al. The occurrence of Alzheimer’s disease and Parkinson’s disease in individuals with osteoporosis: A longitudinal follow-up study using a national health screening database in Korea. Front Aging Neurosci 2021;13:786337.
https://doi.org/10.3389/fnagi.2021.786337.
46. Yang TY, Wang TC, Tsai YH, et al. The effects of an injury to the brain on bone healing and callus formation in young adults with fractures of the femoral shaft. J Bone Joint Surg Br 2012;94:227-30.
https://doi.org/10.1302/0301-620x.94b2.28193.
47. Cadosch D, Gautschi OP, Thyer M, et al. Humoral factors enhance fracture-healing and callus formation in patients with traumatic brain injury. J Bone Joint Surg Am 2009;91:282-8.
https://doi.org/10.2106/jbjs.G.01613.
49. Locher RJ, Lünnemann T, Garbe A, et al. Traumatic brain injury and bone healing: Radiographic and biomechanical analyses of bone formation and stability in a combined murine trauma model. J Musculoskelet Neuronal Interact 2015;15:309-15.
54. Scheven BA, Visser JW, Nijweide PJ. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature 1986;321:79-81.
https://doi.org/10.1038/321079a0.
57. Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015;518:547-51.
https://doi.org/10.1038/nature13989.
58. Brody AH, Nies SH, Guan F, et al. Alzheimer risk gene product Pyk2 suppresses tau phosphorylation and phenotypic effects of tauopathy. Mol Neurodegener 2022;17:32.
https://doi.org/10.1186/s13024-022-00526-y.
59. Albagha OM, Visconti MR, Alonso N, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 2010;42:520-4.
https://doi.org/10.1038/ng.562.
63. de Pins B, Mendes T, Giralt A, et al. The non-receptor tyrosine kinase Pyk2 in brain function and neurological and psychiatric diseases. Front Synaptic Neurosci 2021;13:749001.
https://doi.org/10.3389/fnsyn.2021.749001.
64. Gil-Henn H, Destaing O, Sims NA, et al. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(−/−) mice. J Cell Biol 2007;178:1053-64.
https://doi.org/10.1083/jcb.200701148.
65. Humphrey MB, Daws MR, Spusta SC, et al. TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res 2006;21:237-45.
https://doi.org/10.1359/jbmr.051016.
67. Otero K, Shinohara M, Zhao H, et al. TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol 2012;188:2612-21.
https://doi.org/10.4049/jimmunol.1102836.
68. N’Diaye EN, Branda CS, Branda SS, et al. TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol 2009;184:215-23.
https://doi.org/10.1083/jcb.200808080.
71. Ren M, Guo Y, Wei X, et al. TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson’s disease. Exp Neurol 2018;302:205-13.
https://doi.org/10.1016/j.expneurol.2018.01.016.
72. Jiang T, Tan L, Zhu XC, et al. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 2014;39:2949-62.
https://doi.org/10.1038/npp.2014.164.
74. Mason DJ, Suva LJ, Genever PG, et al. Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? Bone 1997;20:199-205.
https://doi.org/10.1016/s8756-3282(96)00386-9.
76. Marner L, Nyengaard JR, Tang Y, et al. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 2003;462:144-52.
https://doi.org/10.1002/cne.10714.
79. Azevedo FA, Carvalho LR, Grinberg LT, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 2009;513:532-41.
https://doi.org/10.1002/cne.21974.
87. Kollmannsberger P, Kerschnitzki M, Repp F, et al. The small world of osteocytes: Connectomics of the lacuno-canalicular network in bone. New J Phys 2017;19:073019.
https://doi.org/10.1088/1367-2630/aa764b.
88. Weinkamer R, Kollmannsberger P, Fratzl P. Towards a connectomic description of the osteocyte lacunocanalicular network in bone. Curr Osteoporos Rep 2019;17:186-94.
https://doi.org/10.1007/s11914-019-00515-z.
89. Schurman CA, Verbruggen SW, Alliston T. Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling. Proc Natl Acad Sci U S A 2021;118.
https://doi.org/10.1073/pnas.2023999118.
91. Tavee J, Levin K. Nerve conduction studies. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. 2nd ed. Waltham, MA: Academic Press; 2014. p.327. -32.
98. Fukuda T, Takeda S, Xu R, et al. Correction: Corrigendum: Sema3A regulates bone-mass accrual through sensory innervations. Nature 2013;497:490-3.
https://doi.org/10.1038/nature12418.
99. Niimura M, Sato T, Enoki Y, et al. Semaphorin 3A promotes dendrite elongation of osteocytes in association with down-regulation of CDK6. In Vivo 2016;30:231-6.
100. Hayashi M, Nakashima T, Yoshimura N, et al. Autoregulation of osteocyte sema3A orchestrates estrogen action and counteracts bone aging. Cell Metab 2019;29:627-37e5.
https://doi.org/10.1016/j.cmet.2018.12.021.
103. Yi M, Li H, Wu Z, et al. A promising therapeutic target for metabolic diseases: Neuropeptide Y receptors in humans. Cell Physiol Biochem 2018;45:88-107.
https://doi.org/10.1159/000486225.
104. Zhang Y, Liu CY, Chen WC, et al. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021;11:151.
https://doi.org/10.1186/s13578-021-00657-7.
107. Kohno D, Gao HZ, Muroya S, et al. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 2003;52:948-56.
https://doi.org/10.2337/diabetes.52.4.948.
109. Matic I, Matthews BG, Kizivat T, et al. Bone-specific overexpression of NPY modulates osteogenesis. J Musculoskelet Neuronal Interact 2012;12:209-18.
111. Igwe JC, Jiang X, Paic F, et al. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J Cell Biochem 2009;108:621-30.
https://doi.org/10.1002/jcb.22294.
112. Huang Y, Lin X, Lin S. Neuropeptide Y and metabolism syndrome: An update on perspectives of clinical therapeutic intervention strategies. Front Cell Dev Biol 2021;9:695623.
https://doi.org/10.3389/fcell.2021.695623.
113. Shi YC, Lin S, Wong IP, et al. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS One 2010;5:e11361.
https://doi.org/10.1371/journal.pone.0011361.
114. Panaroni C, Tzeng YS, Saeed H, et al. Mesenchymal progenitors and the osteoblast lineage in bone marrow hematopoietic niches. Curr Osteoporos Rep 2014;12:22-32.
https://doi.org/10.1007/s11914-014-0190-7.
117. Barton MJ, John JS, Clarke M, et al. The glia response after peripheral nerve injury: A comparison between schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies. Int J Mol Sci 2017;18:
https://doi.org/10.3390/ijms18020287.
119. Xie M, Kamenev D, Kaucka M, et al. Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc Natl Acad Sci U S A 2019;116:15068-73.
https://doi.org/10.1073/pnas.1900038116.
121. Grigoryan T, Stein S, Qi J, et al. Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development. Proc Natl Acad Sci U S A 2013;110:18174-9.
https://doi.org/10.1073/pnas.1310490110.
123. Fancy SP, Baranzini SE, Zhao C, et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 2009;23:1571-85.
https://doi.org/10.1101/gad.1806309.
128. Borrell-Pages M, Romero JC, Crespo J, et al. LRP5 associates with specific subsets of macrophages: Molecular and functional effects. J Mol Cell Cardiol 2016;90:146-56.
https://doi.org/10.1016/j.yjmcc.2015.12.002.
129. Inestrosa NC, Godoy JA, Quintanilla RA, et al. Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 2005;304:91-104.
https://doi.org/10.1016/j.yexcr.2004.09.032.
132. Purro SA, Galli S, Salinas PC. Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases. J Mol Cell Biol 2014;6:75-80.
https://doi.org/10.1093/jmcb/mjt049.
135. Li W, Zhang Y, Su Y, et al. Intracerebroventricular injection of sclerostin reduced social hierarchy and impaired neuronal dendritic complexity in mice. Neurosci Lett 2022;773:136514.
https://doi.org/10.1016/j.neulet.2022.136514.
136. Borlongan CV, Glover LE, Tajiri N, et al. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 2011;95:213-28.
https://doi.org/10.1016/j.pneurobio.2011.08.005.
138. Chakari-Khiavi F, Dolati S, Chakari-Khiavi A, et al. Prospects for the application of mesenchymal stem cells in Alzheimer’s disease treatment. Life Sci 2019;231:116564.
https://doi.org/10.1016/j.lfs.2019.116564.
139. Qin C, Lu Y, Wang K, et al. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: a meta-analytic review on potential mechanisms. Transl Neurodegener 2020;9:20.
https://doi.org/10.1186/s40035-020-00199-x.
140. Ataka K, Asakawa A, Nagaishi K, et al. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice. PLoS One 2013;8:e81744.
https://doi.org/10.1371/journal.pone.0081744.
141. Jones KB, Mollano AV, Morcuende JA, et al. Bone and brain: A review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J 2004;24:123-32.
144. Grässel SG. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 2014;16:485.
https://doi.org/10.1186/s13075-014-0485-1.
148. Motyl KJ, Beauchemin M, Barlow D, et al. A novel role for dopamine signaling in the pathogenesis of bone loss from the atypical antipsychotic drug risperidone in female mice. Bone 2017;103:168-76.
https://doi.org/10.1016/j.bone.2017.07.008.
149. Zhu J, Feng C, Zhang W, et al. Activation of dopamine receptor D1 promotes osteogenic differentiation and reduces glucocorticoid-induced bone loss by upregulating the ERK1/2 signaling pathway. Mol Med 2022;28:23.
https://doi.org/10.1186/s10020-022-00453-0.
151. Farooqi IS, Yeo GS, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000;106:271-9.
https://doi.org/10.1172/jci9397.
153. Mukohyama H, Ransjö M, Taniguchi H, et al. The inhibitory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide on osteoclast formation are associated with upregulation of osteoprotegerin and downregulation of RANKL and RANK. Biochem Biophys Res Commun 2000;271:158-63.
https://doi.org/10.1006/bbrc.2000.2599.
155. Sun S, Diggins NH, Gunderson ZJ, et al. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone 2020;131:115109.
https://doi.org/10.1016/j.bone.2019.115109.
156. Herber CB, Krause WC, Wang L, et al. Estrogen signaling in arcuate Kiss1 neurons suppresses a sex-dependent female circuit promoting dense strong bones. Nat Commun 2019;10:163.
https://doi.org/10.1038/s41467-018-08046-4.
159. Baliram R, Latif R, Berkowitz J, et al. Thyroid-stimulating hormone induces a Wnt-dependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proc Natl Acad Sci U S A 2011;108:16277-82.
https://doi.org/10.1073/pnas.1110286108.
161. Jiang YL, Wang ZX, Liu XX, et al. The protective effects of osteocyte-derived extracellular vesicles against Alzheimer’s disease diminished with aging. Adv Sci (Weinh) 2022;9:e2105316.
https://doi.org/10.1002/advs.202105316.
162. Goulding SR, Sullivan AM, O'Keeffe GW, et al. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease. Neural Regen Res 2020;15:1432-6.
https://doi.org/10.4103/1673-5374.274327.
165. Song J, Kim OY. Perspectives in lipocalin-2: Emerging biomarker for medical diagnosis and prognosis for Alzheimer’s disease. Clin Nutr Res 2018;7:1-10.
https://doi.org/10.7762/cnr.2018.7.1.1.
168. Qian Z, Li H, Yang H, et al. Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. Sci Adv 2021;7:eabi5811.
https://doi.org/10.1126/sciadv.abi5811.
169. Asimakopoulou A, Weiskirchen R. Lipocalin 2 in the pathogenesis of fatty liver disease and nonalcoholic steatohepatitis. Clin Lipidol 2015;10:47-67.
https://doi.org/10.2217/clp.14.65.
170. Dekens DW, Eisel ULM, Gouweleeuw L, et al. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021;70:101414.
https://doi.org/10.1016/j.arr.2021.101414.
173. Naudé PJ, Nyakas C, Eiden LE, et al. Lipocalin 2: novel component of proinflammatory signaling in Alzheimer’s disease. FASEB J 2012;26:2811-23.
https://doi.org/10.1096/fj.11-202457.
174. Mesquita SD, Ferreira AC, Falcao AM, et al. Lipocalin 2 modulates the cellular response to amyloid beta. Cell Death Differ 2014;21:1588-99.
https://doi.org/10.1038/cdd.2014.68.
179. Cuevas P, Carceller F, Muñoz-Willery I, et al. Intravenous fibroblast growth factor penetrates the blood-brain barrier and protects hippocampal neurons against ischemia-reperfusion injury. Surg Neurol 1998;49:77-83. discussion-4.
https://doi.org/10.1016/s0090-3019(97)00193-6.
184. Sun Y, Yin XS, Guo H, et al. Elevated osteopontin levels in mild cognitive impairment and Alzheimer’s disease. Mediators Inflamm 2013;2013:615745.
https://doi.org/10.1155/2013/615745.
185. Maetzler W, Berg D, Schalamberidze N, et al. Osteopontin is elevated in Parkinson’s disease and its absence leads to reduced neurodegeneration in the MPTP model. Neurobiol Dis 2007;25:473-82.
https://doi.org/10.1016/j.nbd.2006.10.020.
186. Filardi T, Carnevale V, Massoud R, et al. High serum osteopontin levels are associated with prevalent fractures and worse lipid profile in post-menopausal women with type 2 diabetes. J Endocrinol Invest 2019;42:295-301.
https://doi.org/10.1007/s40618-018-0914-0.
187. Kichev A, Eede P, Gressens P, et al. Implicating receptor activator of NF-κB (RANK)/RANK ligand signalling in microglial responses to toll-like receptor stimuli. Dev Neurosci 2017;39:192-206.
https://doi.org/10.1159/000464244.
188. Shimamura M, Nakagami H, Osako MK, et al. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci U S A 2014;111:8191-6.
https://doi.org/10.1073/pnas.1400544111.
190. Zhang J, Fujita Y, Chang L, et al. Beneficial effects of anti-RANKL antibody in depression-like phenotype, inflammatory bone markers, and bone mineral density in male susceptible mice after chronic social defeat stress. Behav Brain Res 2020;379:112397.
https://doi.org/10.1016/j.bbr.2019.112397.
191. Suzawa M, Takeuchi Y, Fukumoto S, et al. Extracellular matrix-associated bone morphogenetic proteins are essential for differentiation of murine osteoblastic cells in vitro. Endocrinology 1999;140:2125-33.
https://doi.org/10.1210/endo.140.5.6704.
193. Bond AM, Bhalala OG, Kessler JA. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol 2012;72:1068-84.
https://doi.org/10.1002/dneu.22022.
194. Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021;123:154837.
https://doi.org/10.1016/j.metabol.2021.154837.
198. Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. Mass Spectrom Rev 2022;e21792.
https://doi.org/10.1002/mas.21792.
199. Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res 2016;31:1920-9.
https://doi.org/10.1002/jbmr.2892.
204. Li KW, Gonzalez-Lozano MA, Koopmans F, et al. Recent developments in data independent acquisition (DIA) mass spectrometry: Application of quantitative analysis of the brain proteome. Front Mol Neurosci 2020;13:564446.
https://doi.org/10.3389/fnmol.2020.564446.
205. Koopmans F, Pandya NJ, Franke SK, et al. Comparative hippocampal synaptic proteomes of rodents and primates: Differences in neuroplasticity-related proteins. Front Mol Neurosci 2018;11:364.
https://doi.org/10.3389/fnmol.2018.00364.
206. Cleland TP, Vashishth D. Bone protein extraction without demineralization using principles from hydroxyapatite chromatography. Anal Biochem 2015;472:62-6.
https://doi.org/10.1016/j.ab.2014.12.006.
208. Shabestari M, Shabestari YR, Landin MA, et al. Altered protein levels in bone marrow lesions of hip osteoarthritis: Analysis by proteomics and multiplex immunoassays. Int J Rheum Dis 2020;23:788-99.
https://doi.org/10.1111/1756-185x.13843.
209. Schreiweis MA, Butler JP, Kulkarni NH, et al. A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers. J Cell Biochem 2007;101:466-76.
https://doi.org/10.1002/jcb.21196.
210. Colleary C, Little NC, Cleland TP. Microwave-assisted acid hydrolysis for whole-bone proteomics and paleoproteomics. Rapid Commun Mass Spectrom 2020;34:e8568.
https://doi.org/10.1002/rcm.8568.
211. Mickleburgh HL, Schwalbe EC, Bonicelli A, et al. Human bone proteomes before and after decomposition: Investigating the effects of biological variation and taphonomic alteration on bone protein profiles and the implications for forensic proteomics. J Proteome Res 2021;20:2533-46.
https://doi.org/10.1021/acs.jproteome.0c00992.
212. Bonicelli A, Di Nunzio A, Di Nunzio C, et al. Insights into the differential preservation of bone proteomes in inhumed and entombed cadavers from Italian forensic caseworks. J Proteome Res 2022;21:1285-98.
https://doi.org/10.1021/acs.jproteome.1c00904.
213. Jiang X, Ye M, Jiang X, et al. Method development of efficient protein extraction in bone tissue for proteome analysis. J Proteome Res 2007;6:2287-94.
https://doi.org/10.1021/pr070056t.
215. Bruderer R, Bernhardt OM, Gandhi T, et al. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics 2017;16:2296-309.
https://doi.org/10.1074/mcp.RA117.000314.
216. Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012;11:O111. 016717.
https://doi.org/10.1074/mcp.O111.016717.
217. Pino LK, Just SC, MacCoss MJ, et al. Acquiring and analyzing data independent acquisition proteomics experiments without spectrum libraries. Mol Cell Proteomics 2020;19:1088-103.
https://doi.org/10.1074/mcp.P119.001913.
218. Collins BC, Hunter CL, Liu Y, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun 2017;8:291.
https://doi.org/10.1038/s41467-017-00249-5.
220. Bons J, Rose J, O’Broin A, et al. Advanced mass spectrometry-based methods for protein molecular-structural biologists. In: Tripathi T, Dubey VK, editors. Advances in protein molecular and structural biology methods. London, UK: Elsevier Inc; 2022. p.311. -26.
221. Bundgaard L, Åhrman E, Malmström J, et al. Effective protein extraction combined with data independent acquisition analysis reveals a comprehensive and quantifiable insight into the proteomes of articular cartilage and subchondral bone. Osteoarthritis Cartilage 2022;30:137-46.
https://doi.org/10.1016/j.joca.2021.09.006.
222. Rose JP, Schurman CA, King CD, et al. Robust and highly efficient extractions of proteins from bones enable deep, high-throughput proteomic quantification to gain insights into bone biology. bioRxiv 2022
https://doi.org/10.1101/2022.11.20.517228.