1. Mares J, Ohlidalova K, Opatrna S, et al. Determinants of prevalent vertebral fractures and progressive bone loss in long-term hemodialysis patients. J Bone Miner Metab 2009;27:217-23.
https://doi.org/10.1007/s00774-008-0030-x
.
3. Kiel DP, Kauppila LI, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 2001;68:271-6.
https://doi.org/10.1007/bf02390833
.
4. Rodriguez Garcia M, Naves Diaz M, Cannata Andia JB. Bone metabolism, vascular calcifications and mortality: associations beyond mere coincidence. J Nephrol 2005;18:458-63.
5. Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69:1945-53.
https://doi.org/10.1038/sj.ki.5000414
.
8. Desbiens LC, Sidibé A, Ung RV, et al. FGF23-klotho axis and fractures in patients without and with early CKD: A case-cohort analysis of CARTaGENE. J Clin Endocrinol Metab 2022;107:e2502-12.
https://doi.org/10.1210/clinem/dgac071
.
9. Desbiens LC, Sidibé A, Ung RV, et al. FGF23-klotho axis, bone fractures, and arterial stiffness in dialysis: a case-control study. Osteoporos Int 2018;29:2345-53.
https://doi.org/10.1007/s00198-018-4598-2
.
11. Justesen J, Stenderup K, Ebbesen EN, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001;2:165-71.
https://doi.org/10.1023/a:1011513223894
.
12. Verma S, Rajaratnam JH, Denton J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 2002;55:693-8.
https://doi.org/10.1136/jcp.55.9.693
.
15. Shen W, Scherzer R, Gantz M, et al. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 2012;97:1337-46.
https://doi.org/10.1210/jc.2011-2605
.
16. Nuttall ME, Patton AJ, Olivera DL, et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 1998;13:371-82.
https://doi.org/10.1359/jbmr.1998.13.3.371
.
22. Li X, Kuo D, Schafer AL, et al. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 2011;33:974-9.
https://doi.org/10.1002/jmri.22489
.
23. Pansini V, Monnet A, Salleron J, et al. 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex. J Magn Reson Imaging 2014;39:369-76.
https://doi.org/10.1002/jmri.24176
.
27. Bredella MA, Daley SM, Kalra MK, et al. Marrow adipose tissue quantification of the lumbar spine by using dual-energy CT and single-voxel (1)H MR spectroscopy: A feasibility study. Radiology 2015;277:230-5.
https://doi.org/10.1148/radiol.2015142876
.
28. Hui SK, Arentsen L, Sueblinvong T, et al. A phase I feasibility study of multi-modality imaging assessing rapid expansion of marrow fat and decreased bone mineral density in cancer patients. Bone 2015;73:90-7.
https://doi.org/10.1016/j.bone.2014.12.014
.
30. Ikeda T, Sakurai K. Influence of bone marrow fat on the determination of bone mineral content by QCT. Nihon Igaku Hoshasen Gakkai Zasshi 1994;54:886-96.
34. Orwoll E, Blank JB, Barrett-Connor E, et al. Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study--a large observational study of the determinants of fracture in older men. Contemp Clin Trials 2005;26:569-85.
https://doi.org/10.1016/j.cct.2005.05.006
.
35. Bani Hassan E, Demontiero O, Vogrin S, et al. Marrow adipose tissue in older men: Association with visceral and subcutaneous fat, bone volume, metabolism, and inflammation. Calcif Tissue Int 2018;103:164-74.
https://doi.org/10.1007/s00223-018-0412-6
.
37. Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 2006;17:3223-32.
https://doi.org/10.1681/asn.2005111194
.
38. Prasad B, Ferguson T, Tangri N, et al. Association of bone mineral density with fractures across the spectrum of chronic kidney disease: The regina CKD-MBD study. Can J Kidney Health Dis 2019;6:2054358119870539
https://doi.org/10.1177/2054358119870539
.
39. Belavy DL, Quittner MJ, Ridgers ND, et al. Specific modulation of vertebral marrow adipose tissue by physical activity. J Bone Miner Res 2018;33:651-7.
https://doi.org/10.1002/jbmr.3357
.
41. Matsuzaki J, Suzuki H, Kobayakawa M, et al. Association of visceral fat area, smoking, and alcohol consumption with reflux esophagitis and Barrett’s esophagus in Japan. PLoS One 2015;10:e0133865.
https://doi.org/10.1371/journal.pone.0133865
.
42. Katergari SA, Passadakis P, Milousis A, et al. Subcutaneous and total fat at L4-L5 and subcutaneous, visceral and total fat at L3-L4 are important contributors of fasting and postprandial adiponectin levels. Endocr Res 2015;40:127-32.
https://doi.org/10.3109/07435800.2014.920349
.
43. Schwartz AV, Sigurdsson S, Hue TF, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 2013;98:2294-300.
https://doi.org/10.1210/jc.2012-3949
.
47. Coutel X, Olejnik C, Marchandise P, et al. A novel microCT method for bone and marrow adipose tissue alignment identifies key differences between mandible and tibia in rats. Calcif Tissue Int 2018;103:189-97.
https://doi.org/10.1007/s00223-018-0397-1
.
48. Wong AK, Chandrakumar A, Whyte R, et al. Bone marrow and muscle fat infiltration are correlated among postmenopausal women with osteoporosis: The AMBERS cohort study. J Bone Miner Res 2020;35:516-27.
https://doi.org/10.1002/jbmr.3910
.
49. Singhal V, Maffazioli GD, Cano Sokoloff N, et al. Regional fat depots and their relationship to bone density and microarchitecture in young oligo-amenorrheic athletes. Bone 2015;77:83-90.
https://doi.org/10.1016/j.bone.2015.04.005
.
53. Pavik I, Jaeger P, Ebner L, et al. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 2013;28:352-9.
https://doi.org/10.1093/ndt/gfs460
.
55. Bielesz BO, Hempfing T, Kieweg H, et al. Sclerostin declines during hemodialysis and appears in dialysate. Blood Purif 2014;38:30-6.
https://doi.org/10.1159/000364992
.
56. Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 2015;88:235-40.
https://doi.org/10.1038/ki.2015.156
.
57. Xu YX, Xu B, Wu CL, et al. Dynamic expression of DKK1 protein in the process whereby Epimedium-derived flavonoids up-regulate osteogenic and down-regulate adipogenic differentiation of bone marrow stromal cells in ovariectomized rats. Orthop Surg 2011;3:119-26.
https://doi.org/10.1111/j.1757-7861.2011.00129.x
.