4. Xu R, Zhang C, Shin DY, et al. c-Jun N-terminal kinases (JNKs) are critical mediators of osteoblast activity in vivo. J Bone Miner Res 2017;32:1811-5.
https://doi.org/10.1002/jbmr.3184.
5. Greenblatt MB, Shim JH, Zou W, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 2010;120:2457-73.
https://doi.org/10.1172/jci42285.
6. Ge C, Xiao G, Jiang D, et al. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 2007;176:709-18.
https://doi.org/10.1083/jcb.200610046.
9. Stevenson DA, Yan J, He Y, et al. Multiple increased osteoclast functions in individuals with neurofibromatosis type 1. Am J Med Genet A 2011;155a:1050-9.
https://doi.org/10.1002/ajmg.a.33965.
10. David JP, Sabapathy K, Hoffmann O, et al. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 2002;115:4317-25.
https://doi.org/10.1242/jcs.00082.
11. Matsumoto M, Sudo T, Saito T, et al. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 2000;275:31155-61.
https://doi.org/10.1074/jbc.M001229200.
12. Lee SE, Woo KM, Kim SY, et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 2002;30:71-7.
https://doi.org/10.1016/s8756-3282(01)00657-3.
13. Lee SE, Chung WJ, Kwak HB, et al. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem 2001;276:49343-9.
https://doi.org/10.1074/jbc.M103642200.
16. Aoidi R, Maltais A, Charron J. Functional redundancy of the kinases MEK1 and MEK2: Rescue of the Mek1 mutant phenotype by Mek2 knock-in reveals a protein threshold effect. Sci Signal 2016;9:ra9.
https://doi.org/10.1126/scisignal.aad5658.
18. Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015;372:30-9.
https://doi.org/10.1056/NEJMoa1412690.
19. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507-16.
https://doi.org/10.1056/NEJMoa1103782.
23. Elefteriou F, Benson MD, Sowa H, et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 2006;4:441-51.
https://doi.org/10.1016/j.cmet.2006.10.010.
24. Ono K, Karolak MR, Ndong Jde L, et al. The ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation. Hum Mol Genet 2013;22:3048-62.
https://doi.org/10.1093/hmg/ddt162.
25. Matsushita T, Chan YY, Kawanami A, et al. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol 2009;29:5843-57.
https://doi.org/10.1128/mcb.01549-08.
27. Zhou X, von der Mark K, Henry S, et al. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet 2014;10:e1004820.
https://doi.org/10.1371/journal.pgen.1004820.
28. Yang L, Tsang KY, Tang HC, et al. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 2014;111:12097-102.
https://doi.org/10.1073/pnas.1302703111.
30. Matsushita Y, Nagata M, Kozloff KM, et al. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun 2020;11:332.
https://doi.org/10.1038/s41467-019-14029-w.
32. Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014;15:154-68.
https://doi.org/10.1016/j.stem.2014.06.008.
35. Xiao G, Jiang D, Gopalakrishnan R, et al. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem 2002;277:36181-7.
https://doi.org/10.1074/jbc.M206057200.
36. Ge C, Xiao G, Jiang D, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 2009;284:32533-43.
https://doi.org/10.1074/jbc.M109.040980.
37. Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone 2008;42:631-43.
https://doi.org/10.1016/j.bone.2007.11.019.
38. Park WJ, Theda C, Maestri NE, et al. Analysis of phenotypic features and FGFR2 mutations in Apert syndrome. Am J Hum Genet 1995;57:321-8.
39. Shukla V, Coumoul X, Wang RH, et al. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 2007;39:1145-50.
https://doi.org/10.1038/ng2096.
40. Park J, Park OJ, Yoon WJ, et al. Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis. J Cell Biochem 2012;113:457-64.
https://doi.org/10.1002/jcb.23368.
41. Yoon WJ, Cho YD, Kim WJ, et al. Prolyl isomerase Pin1-mediated conformational change and subnuclear focal accumulation of Runx2 are crucial for fibroblast growth factor 2 (FGF2)-induced osteoblast differentiation. J Biol Chem 2014;289:8828-38.
https://doi.org/10.1074/jbc.M113.516237.
43. Park OJ, Kim HJ, Woo KM, et al. FGF2-activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J Biol Chem 2010;285:3568-74.
https://doi.org/10.1074/jbc.M109.055053.
44. Kim HJ, Lee MH, Park HS, et al. Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure. Dev Dyn 2003;227:335-46.
https://doi.org/10.1002/dvdy.10319.
46. Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000;141:2674-82.
https://doi.org/10.1210/endo.141.7.7585.
48. Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 2002;277:44005-12.
https://doi.org/10.1074/jbc.M208265200.
49. Zhang W, Shen X, Wan C, et al. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 2012;30:297-302.
https://doi.org/10.1002/cbf.2801.
50. Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 2005;280:31353-9.
https://doi.org/10.1074/jbc.M503845200.
51. Shim JH, Greenblatt MB, Zou W, et al. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J Clin Invest 2013;123:4010-22.
https://doi.org/10.1172/jci69443.
52. Caverzasio J, Manen D. Essential role of Wnt3a-mediated activation of mitogen-activated protein kinase p38 for the stimulation of alkaline phosphatase activity and matrix mineralization in C3H10T1/2 mesenchymal cells. Endocrinology 2007;148:5323-30.
https://doi.org/10.1210/en.2007-0520.
54. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016;4:16009.
https://doi.org/10.1038/boneres.2016.9.
55. Matsunobu T, Torigoe K, Ishikawa M, et al. Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol 2009;332:325-38.
https://doi.org/10.1016/j.ydbio.2009.06.002.
56. Lai CF, Cheng SL. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem 2002;277:15514-22.
https://doi.org/10.1074/jbc.M200794200.
57. Xiao G, Gopalakrishnan R, Jiang D, et al. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res 2002;17:101-10.
https://doi.org/10.1359/jbmr.2002.17.1.101.
58. Huang RL, Yuan Y, Tu J, et al. Opposing TNF-α/IL-1β- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation. Cell Death Dis 2014;5:e1187.
https://doi.org/10.1038/cddis.2014.101.
60. Provot S, Nachtrab G, Paruch J, et al. A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes. Mol Cell Biol 2008;28:344-57.
https://doi.org/10.1128/mcb.00617-07.
61. Papaioannou G, Petit ET, Liu ES, et al. Raf kinases are essential for phosphate induction of ERK1/2 phosphorylation in hypertrophic chondrocytes and normal endochondral bone development. J Biol Chem 2017;292:3164-71.
https://doi.org/10.1074/jbc.M116.763342.
62. Zou W, Greenblatt MB, Shim JH, et al. MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. J Clin Invest 2011;121:4383-92.
https://doi.org/10.1172/jci59041.
63. Zheng Y, Fischer DJ, Santos MF, et al. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem 1996;271:33169-72.
https://doi.org/10.1074/jbc.271.52.33169.
64. Blank JL, Gerwins P, Elliott EM, et al. Molecular cloning of mitogen-activated protein/ERK kinase kinases (MEKK) 2 and 3. Regulation of sequential phosphorylation pathways involving mitogen-activated protein kinase and c-Jun kinase. J Biol Chem 1996;271:5361-8.
https://doi.org/10.1074/jbc.271.10.5361.
65. Sun W, Wei X, Kesavan K, et al. MEK kinase 2 and the adaptor protein Lad regulate extracellular signal-regulated kinase 5 activation by epidermal growth factor via Src. Mol Cell Biol 2003;23:2298-308.
https://doi.org/10.1128/mcb.23.7.2298-2308.2003.
66. Cheng J, Yang J, Xia Y, et al. Synergistic interaction of MEK kinase 2, c-Jun N-terminal kinase (JNK) kinase 2, and JNK1 results in efficient and specific JNK1 activation. Mol Cell Biol 2000;20:2334-42.
https://doi.org/10.1128/mcb.20.7.2334-2342.2000.
67. Kesavan K, Lobel-Rice K, Sun W, et al. MEKK2 regulates the coordinate activation of ERK5 and JNK in response to FGF-2 in fibroblasts. J Cell Physiol 2004;199:140-8.
https://doi.org/10.1002/jcp.10457.
68. Greenblatt MB, Shin DY, Oh H, et al. MEKK2 mediates an alternative β-catenin pathway that promotes bone formation. Proc Natl Acad Sci U S A 2016;113:E1226-35.
https://doi.org/10.1073/pnas.1600813113.
69. Yamashita M, Ying SX, Zhang GM, et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 2005;121:101-13.
https://doi.org/10.1016/j.cell.2005.01.035.
71. Wang W, Nyman JS, Ono K, et al. Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Hum Mol Genet 2011;20:3910-24.
https://doi.org/10.1093/hmg/ddr310.
72. Friedman JM. Epidemiology of neurofibromatosis type 1. Am J Med Genet 1999;89:1-6.
76. Elefteriou F, Kolanczyk M, Schindeler A, et al. Skeletal abnormalities in neurofibromatosis type 1: approaches to therapeutic options. Am J Med Genet A 2009;149a:2327-38.
https://doi.org/10.1002/ajmg.a.33045.
77. Kolanczyk M, Kossler N, Kühnisch J, et al. Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet 2007;16:874-86.
https://doi.org/10.1093/hmg/ddm032.
78. de la Croix Ndong J, Makowski AJ, Uppuganti S, et al. Asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med 2014;20:904-10.
https://doi.org/10.1038/nm.3583.
81. Uhlén P, Burch PM, Zito CI, et al. Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proc Natl Acad Sci U S A 2006;103:2160-5.
https://doi.org/10.1073/pnas.0510876103.
82. Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007;39:70-4.
https://doi.org/10.1038/ng1926.
83. Choudhry KS, Grover M, Tran AA, et al. Decreased bone mineralization in children with Noonan syndrome: another consequence of dysregulated RAS MAPKinase pathway? Mol Genet Metab 2012;106:237-40.
https://doi.org/10.1016/j.ymgme.2012.04.003.
85. Yang W, Wang J, Moore DC, et al. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 2013;499:491-5.
https://doi.org/10.1038/nature12396.
86. Bowen ME, Boyden ED, Holm IA, et al. Loss-of-function mutations in PTPN11 cause metachondromatosis, but not Ollier disease or Maffucci syndrome. PLoS Genet 2011;7:e1002050.
https://doi.org/10.1371/journal.pgen.1002050.
88. Wang L, Yang H, Huang J, et al. Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis. Bone Res 2021;9:6.
https://doi.org/10.1038/s41413-020-00129-7.
92. Muniyappa H, Das KC. Activation of c-Jun N-terminal kinase (JNK) by widely used specific p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-dependent mechanism. Cell Signal 2008;20:675-83.
https://doi.org/10.1016/j.cellsig.2007.12.003.
93. Xiao G, Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 2000;275:4453-9.
https://doi.org/10.1074/jbc.275.6.4453.
94. Ge C, Yang Q, Zhao G, et al. Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 2012;27:538-51.
https://doi.org/10.1002/jbmr.561.
96. Yoon WJ, Islam R, Cho YD, et al. Pin1-mediated Runx2 modification is critical for skeletal development. J Cell Physiol 2013;228:2377-85.
https://doi.org/10.1002/jcp._24403.
97. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:765-71.
https://doi.org/10.1016/s0092-8674(00)80259-7.
99. Smith JA, Poteet-Smith CE, Malarkey K, et al. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem 1999;274:2893-8.
https://doi.org/10.1074/jbc.274.5.2893.
100. Trivier E, De Cesare D, Jacquot S, et al. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 1996;384:567-70.
https://doi.org/10.1038/384567a0.
102. Jochum W, David JP, Elliott C, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 2000;6:980-4.
https://doi.org/10.1038/79676.
104. Bakiri L, Reschke MO, Gefroh HA, et al. Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis. Oncogene 2011;30:1506-17.
https://doi.org/10.1038/onc.2010.542.
108. Wang X, Merritt AJ, Seyfried J, et al. Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway. Mol Cell Biol 2005;25:336-45.
https://doi.org/10.1128/mcb.25.1.336-345.2005.
111. Loveridge CJ, van’t Hof RJ, Charlesworth G, et al. Analysis of Nkx3.1:Cre-driven Erk5 deletion reveals a profound spinal deformity which is linked to increased osteoclast activity. Sci Rep 2017;7:13241.
https://doi.org/10.1038/s41598-017-13346-8.
112. Iezaki T, Fukasawa K, Horie T, et al. The MAPK Erk5 is necessary for proper skeletogenesis involving a Smurf-Smad-Sox9 molecular axis. Development 2018;145:dev164004.
https://doi.org/10.1242/dev.164004.
113. Ambrosi TH, Sinha R, Steininger HM, et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife 2021;10:e66063.
https://doi.org/10.7554/eLife.66063.
116. Matthews BG, Grcevic D, Wang L, et al. Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J Bone Miner Res 2014;29:1283-94.
https://doi.org/10.1002/jbmr.2140.