1. Wells BG, DiPiro JT, Schwinghammer TL, et al. Pharmacotherapy handbook. 10th ed. New York, NY: McGraw-Hill Education; 2017.
2. Delmas PD, Fraser M. Strong bones in later life: luxury or necessity? Bull World Health Organ 1999;77:416-22.
4. National Osteoporosis Foundation. 2017 Annual report 2017 [cited by 2018 Mar 24]. Available from:
https://www.nof.org/
.
7. Zeind CS, Carvalho MG. Applied therapeutics. 11th ed. Philadelphia, PA: Wolters Kluwer Health; 2017.
9. Garnero P, Sornay-Rendu E, Chapuy MC, et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996;11:337-49.
http://dx.doi.org/10.1002/jbmr.5650110307
.
10. Thorne Research, Inc. Vitamin K2. Monograph. Altern Med Rev 2009;14:284-93.
11. Plaza SM, Lamson DW. Vitamin K2 in bone metabolism and osteoporosis. Altern Med Rev 2005;10:24-35.
19. Urayama S, Kawakami A, Nakashima T, et al. Effect of vitamin K2 on osteoblast apoptosis: vitamin K2 inhibits apoptotic cell death of human osteoblasts induced by Fas, proteasome inhibitor, etoposide, and staurosporine. J Lab Clin Med 2000;136:181-93.
http://dx.doi.org/10.1067/mlc.2000.108754
.
20. Gundberg CM, Lian JB, Gallop PM, et al. Urinary gamma-carboxyglutamic acid and serum osteocalcin as bone markers: studies in osteoporosis and Paget’s disease. J Clin Endocrinol Metab 1983;57:1221-5.
http://dx.doi.org/10.1210/jcem-57-6-1221
.
22. Kim M, Na W, Sohn C. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice. J Clin Biochem Nutr 2013;53:108-13.
http://dx.doi.org/10.3164/jcbn.13-25
.
23. Asawa Y, Amizuka N, Hara K, et al. Histochemical evaluation for the biological effect of menatetrenone on metaphyseal trabeculae of ovariectomized rats. Bone 2004;35:870-80.
http://dx.doi.org/10.1016/j.bone.2004.06.007
.
24. Kameda T, Miyazawa K, Mori Y, et al. Vitamin K2 inhibits osteoclastic bone resorption by inducing osteoclast apoptosis. Biochem Biophys Res Commun 1996;220:515-9.
http://dx.doi.org/10.1006/bbrc.1996.0436
.
27. Yamaguchi M, Weitzmann MN. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. Int J Mol Med 2011;27:3-14.
http://dx.doi.org/10.3892/ijmm.2010.562
.
28. Huang ZB, Wan SL, Lu YJ, et al. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int 2015;26:1175-86.
http://dx.doi.org/10.1007/s00198-014-2989-6
.
31. In: Halpern SH, Douglas MJ, editors. Evidence-based obstetric anesthesia. Malden, MA: Blackwell Publishing Ltd; 2005.
34. Yasui T, Miyatani Y, Tomita J, et al. Effect of vitamin K2 treatment on carboxylation of osteocalcin in early postmenopausal women. Gynecol Endocrinol 2006;22:455-9.
http://dx.doi.org/10.1080/09513590600900402
.
35. Ushiroyama T, Ikeda A, Ueki M. Effect of continuous combined therapy with vitamin K(2) and vitamin D(3) on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas 2002;41:211-21.
http://dx.doi.org/10.1016/s0378-5122(01)00275-4
.
36. Jiang Y, Zhang ZL, Zhang ZL, et al. Menatetrenone versus alfacalcidol in the treatment of Chinese postmenopausal women with osteoporosis: a multicenter, randomized, double-blinded, double-dummy, positive drug-controlled clinical trial. Clin Interv Aging 2014;9:121-7.
http://dx.doi.org/10.2147/cia.S54107
.
37. Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int 2007;18:963-72.
http://dx.doi.org/10.1007/s00198-007-0337-9
.
38. Rønn SH, Harsløf T, Pedersen SB, et al. Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur J Endocrinol 2016;175:541-9.
http://dx.doi.org/10.1530/eje-16-0498
.
39. Emaus N, Gjesdal CG, Almås B, et al. Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporos Int 2010;21:1731-40.
http://dx.doi.org/10.1007/s00198-009-1126-4
.
40. Koitaya N, Ezaki J, Nishimuta M, et al. Effect of low dose vitamin K2 (MK-4) supplementation on bio-indices in postmenopausal Japanese women. J Nutr Sci Vitaminol (Tokyo) 2009;55:15-21.
http://dx.doi.org/10.3177/jnsv.55.15
.
41. Inaba N, Sato T, Yamashita T. Low-dose daily intake of vitamin K(2) (menaquinone-7) improves osteocalcin γ-carboxylation: A double-blind, randomized controlled trials. J Nutr Sci Vitaminol (Tokyo) 2015;61:471-80.
http://dx.doi.org/10.3177/jnsv.61.471
.
42. Kazdin AE. Almost clinically significant (p<.10): Current measures may only approach clinical significance. Clinic Psychol Sci Pract 2001;8:455-62.
43. Page P. Beyond statistical significance: clinical interpretation of rehabilitation research literature. Int J Sports Phys Ther 2014;9:726-36.
44. Gajic-Veljanoski O, Bayoumi AM, Tomlinson G, et al. Vitamin K supplementation for the primary prevention of osteoporotic fractures: is it cost-effective and is future research warranted? Osteoporos Int 2012;23:2681-92.
http://dx.doi.org/10.1007/s00198-012-1939-4
.
48. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005;26:97-122.
51. Koshihara Y, Hoshi K, Okawara R, et al. Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture. J Endocrinol 2003;176:339-48.
http://dx.doi.org/10.1677/joe.0.1760339
.
53. Nimptsch K, Hailer S, Rohrmann S, et al. Determinants and correlates of serum undercarboxylated osteocalcin. Ann Nutr Metab 2007;51:563-70.
http://dx.doi.org/10.1159/000114211
.
54. Szulc P, Arlot M, Chapuy MC, et al. Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res 1994;9:1591-5.
http://dx.doi.org/10.1002/jbmr.5650091012
.
55. Miki T, Nakatsuka K, Naka H, et al. Vitamin K(2) (menaquinone 4) reduces serum undercarboxylated osteocalcin level as early as 2 weeks in elderly women with established osteoporosis. J Bone Miner Metab 2003;21:161-5.
http://dx.doi.org/10.1007/s007740300025
.
57. Aonuma H, Miyakoshi N, Hongo M, et al. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 2009;218:201-5.
http://dx.doi.org/10.1620/tjem.218.201
.
58. Hirao M, Hashimoto J, Ando W, et al. Response of serum carboxylated and undercarboxylated osteocalcin to alendronate monotherapy and combined therapy with vitamin K2 in postmenopausal women. J Bone Miner Metab 2008;26:260-4.
http://dx.doi.org/10.1007/s00774-007-0823-3
.
60. Sokol DK. Truth-telling in the doctor-patient relationship: a case analysis. Clin Ethics 2006;1:130-4.
62. van Summeren MJ, Braam LA, Lilien MR, et al. The effect of menaquinone-7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br J Nutr 2009;102:1171-8.
http://dx.doi.org/10.1017/s0007114509382100
.
64. Sasaki N, Kusano E, Takahashi H, et al. Vitamin K2 inhibits glucocorticoid-induced bone loss partly by preventing the reduction of osteoprotegerin (OPG). J Bone Miner Metab 2005;23:41-7.
http://dx.doi.org/10.1007/s00774-004-0539-6
.
66. Liu PT, Stenger S, Tang DH, et al. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007;179:2060-3.
http://dx.doi.org/10.4049/jimmunol.179.4.2060
.
67. Rosen HN, Moses AC, Garber J, et al. Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int 2000;66:100-3.
http://dx.doi.org/10.1007/pl00005830
.
68. Miller PD, Baran DT, Bilezikian JP, et al. Practical clinical application of biochemical markers of bone turnover: Consensus of an expert panel. J Clin Densitom 1999;2:323-42.
http://dx.doi.org/10.1385/jcd:2:3:323
.
69. Roy DK, O’Neill TW, Finn JD, et al. Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 2003;14:19-26.
http://dx.doi.org/10.1007/s00198-002-1317-8
.
70. Kitatani K, Nakatsuka K, Naka H, et al. Clinical usefulness of measurements of urinary deoxypyridinoline (DPD) in patients with postmenopausal osteoporosis receiving intermittent cyclical etidronate: advantage of free form of DPD over total DPD in predicting treatment efficacy. J Bone Miner Metab 2003;21:217-24.
http://dx.doi.org/10.1007/s00774-003-0412-z
.
71. Kalinowski P, Fidler F. Interpreting significance: The differences between statistical significance, effect size, and practical importance. Newborn Infant Nurs Rev 2010;10:50-4.
72. Kirk RE. Practical significance: A concept whose time has come. Educ Psychol Meas 1996;56:746-59.
74. Sultan E, Taha I. Altered bone metabolic markers in type 2 diabetes mellitus: Impact of glycemic control. J Taibah Univ Med Sci 2008;3:104-16.
75. Razny U, Fedak D, Kiec-Wilk B, et al. Carboxylated and undercarboxylated osteocalcin in metabolic complications of human obesity and prediabetes. Diabetes Metab Res Rev 2017;33:
http://dx.doi.org/10.1002/dmrr.2862
.
76. Nagata Y, Inaba M, Imanishi Y, et al. Increased undercarboxylated osteocalcin/intact osteocalcin ratio in patients undergoing hemodialysis. Osteoporos Int 2015;26:1053-61.
http://dx.doi.org/10.1007/s00198-014-2954-4
.
77. In: Orwoll ES, Bliziotes M, editors. Osteoporosis: Pathophysiology and clinical management. New York, NY: Humana Press; 2003.
79. Schurgers LJ, Teunissen KJ, Hamulyák K, et al. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 2007;109:3279-83.
http://dx.doi.org/10.1182/blood-2006-08-040709
.