1. Rosenberg IH. Summary comments. Am J Clin Nutr 1989;50:1231-1233.
2. Janssen I. Evolution of sarcopenia research. Appl Physiol Nutr Metab 2010;35:707-712.
3. Lloyd N. AIM coalition announces establishment of ICD-10-CM code for sarcopenia by the centers for disease control and prevention 2016;cited by 2016 Apr 28. Available from:
https://www.aginginmotion.org/news/2388-2/.
4. Melton LJ 3rd, Khosla S, Crowson CS, et al. Epidemiology of sarcopenia. J Am Geriatr Soc 2000;48:625-630.
5. Abellan van Kan G. Epidemiology and consequences of sarcopenia. J Nutr Health Aging 2009;13:708-712.
6. Dennis RA, Przybyla B, Gurley C, et al. Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiol Genomics 2008;32:393-400.
8. Deuster PA, Morrison SD, Ahrens RA. Endurance exercise modifies cachexia of tumor growth in rats. Med Sci Sports Exerc 1985;17:385-392.
10. Adams V, Nehrhoff B, Späte U, et al. Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res 2002;54:95-104.
11. Schindler R, Mancilla J, Endres S, et al. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990;75:40-47.
12. Palus S, Springer JI, Doehner W, et al. Models of sarcopenia: Short review. Int J Cardiol 2017;238:19-21.
13. Shavlakadze T, Grounds M. Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Bioessays 2006;28:994-1009.
14. Chai RJ, Vukovic J, Dunlop S, et al. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One 2011;6:e28090.
17. Tarantini S, Yabluchanskiy A, Fülöp GA, et al. Age-related alterations in gait function in freely moving male C57BL/6 mice: Translational relevance of decreased cadence and increased gait variability. J Gerontol A Biol Sci Med Sci 2019;74:1417-1421.
18. Pötsch MS, Tschirner A, Palus S, et al. The anabolic catabolic transforming agent (ACTA) espindolol increases muscle mass and decreases fat mass in old rats. J Cachexia Sarcopenia Muscle 2014;5:149-158.
19. Fellner C, Schick F, Kob R, et al. Diet-induced and age-related changes in the quadriceps muscle: MRI and MRS in a rat model of sarcopenia. Gerontology 2014;60:530-538.
20. Bollheimer LC, Buettner R, Pongratz G, et al. Sarcopenia in the aging high-fat fed rat: a pilot study for modeling sarcopenic obesity in rodents. Biogerontology 2012;13:609-620.
22. Brown JC, Harhay MO, Harhay MN. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle 2016;7:290-298.
23. Lawler JM, Song W, Demaree SR. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 2003;35:9-16.
24. Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985) 2002;92:1367-1377.
25. Morey ER. Spaceflight and bone turnover: Correlation with a new rat model of weightlessness. Bioscience 1979;29:168-172.
26. Musacchia XJ, Deavers DR, Meininger GA, et al. A model for hypokinesia: effects on muscle atrophy in the rat. J Appl Physiol Respir Environ Exerc Physiol 1980;48:479-486.
27. Deavers DR, Musacchia XJ, Meininger GA. Model for antiorthostatic hypokinesia: head-down tilt effects on water and salt excretion. J Appl Physiol Respir Environ Exerc Physiol 1980;49:576-582.
28. Stump CS, Overton JM, Tipton CM. Influence of single hindlimb support during simulated weightlessness in the rat. J Appl Physiol (1985) 1990;68:627-634.
29. Bouzeghrane F, Fagette S, Somody L, et al. Restraint vs. hindlimb suspension on fluid and electrolyte balance in rats. J Appl Physiol (1985) 1996;80:1993-2001.
30. Hargens AR, Tipton CM. Tissue fluid shift, forelimb loading, and tail tension in tail-suspended rats. Physiologist 1984;27:S37-S38.
31. Globus RK, Bikle DD, Morey-Holton E. The temporal response of bone to unloading. Endocrinology 1986;118:733-742.
32. Halloran BP, Bikle DD, Cone CM, et al. Glucocorticoids and inhibition of bone formation induced by skeletal unloading. Am J Physiol 1988;255:E875-E879.
33. Fell RD, Gladden LB, Steffen JM, et al. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats. J Appl Physiol (1985) 1985;58:65-69.
34. Fitts RH, Metzger JM, Riley DA, et al. Models of disuse: a comparison of hindlimb suspension and immobilization. J Appl Physiol (1985) 1986;60:1946-1953.
35. Jaspers SR, Tischler ME. Atrophy and growth failure of rat hindlimb muscles in tail-cast suspension. J Appl Physiol Respir Environ Exerc Physiol 1984;57:1472-1479.
36. Templeton GH, Padalino M, Manton J, et al. Influence of suspension hypokinesia on rat soleus muscle. J Appl Physiol Respir Environ Exerc Physiol 1984;56:278-286.
37. Tsika RW, Herrick RE, Baldwin KM. Interaction of compensatory overload and hindlimb suspension on myosin isoform expression. J Appl Physiol (1985) 1987;62:2180-2186.
38. Goldspink DF, Morton AJ, Loughna P, et al. The effect of hypokinesia and hypodynamia on protein turnover and the growth of four skeletal muscles of the rat. Pflugers Arch 1986;407:333-340.
39. Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 2008;9:213-228.
40. Thompson LV. Age-related muscle dysfunction. Exp Gerontol 2009;44:106-111.
41. Delbono O. Neural control of aging skeletal muscle. Aging Cell 2003;2:21-29.
42. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;127:990s-991s.
43. Luff AR. Age-associated changes in the innervation of muscle fibers and changes in the mechanical properties of motor units. Ann N Y Acad Sci 1998;854:92-101.
44. Flood DG, Coleman PD. Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 1988;9:453-463.
46. Yang F, Wang W, Li J, et al. Antler development was inhibited or stimulated by cryosurgery to periosteum or skin in a central antlerogenic region respectively. J Exp Zool B Mol Dev Evol 2011;316:359-370.
48. Kobayashi J, Mackinnon SE, Watanabe O, et al. The effect of duration of muscle denervation on functional recovery in the rat model. Muscle Nerve 1997;20:858-866.
49. Batt JA, Bain JR. Tibial nerve transection - a standardized model for denervation-induced skeletal muscle atrophy in mice. J Vis Exp 2013;e50657.
51. Plant PJ, Bain JR, Correa JE, et al. Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy. J Appl Physiol (1985) 2009;107:224-234.
52. Batt J, Bain J, Goncalves J, et al. Differential gene expression profiling of short and long term denervated muscle. FASEB J 2006;20:115-117.
53. Bain JR, Veltri KL, Chamberlain D, et al. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. Neuroscience 2001;103:503-510.
54. Sher J, Cardasis C. Skeletal muscle fiber types in the adult mouse. Acta Neurol Scand 1976;54:45-56.
55. Agbulut O, Noirez P, Beaumont F, et al. Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 2003;95:399-406.
56. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989;83:129-138.
57. Hare GM, Evans PJ, Mackinnon SE, et al. Walking track analysis: utilization of individual footprint parameters. Ann Plast Surg 1993;30:147-153.
59. Varejão AS, Meek MF, Ferreira AJ, et al. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 2001;108:1-9.
60. Willand MP, Holmes M, Bain JR, et al. Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle Nerve 2013;48:219-225.
62. Rogoz K, Lagerström MC, Dufour S, et al. VGLUT2-dependent glutamatergic transmission in primary afferents is required for intact nociception in both acute and persistent pain modalities. Pain 2012;153:1525-1536.
63. Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 2010;48:642-655.
64. Fulle S, Protasi F, Di Tano G, et al. The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp Gerontol 2004;39:17-24.
65. Sastre J, Pallardó FV, Viña J. The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 2003;35:1-8.
67. Muller FL, Song W, Liu Y, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 2006;40:1993-2004.
69. Fischer LR, Li Y, Asress SA, et al. Absence of SOD1 leads to oxidative stress in peripheral nerve and causes a progressive distal motor axonopathy. Exp Neurol 2012;233:163-171.
70. Fischer LR, Igoudjil A, Magrané J, et al. SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse. Brain 2011;134:196-209.
71. Chiu AY, Zhai P, Dal Canto MC, et al. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 1995;6:349-362.
72. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994;264:1772-1775.
74. Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 2004;185:232-240.
77. Kennel PF, Finiels F, Revah F, et al. Neuromuscular function impairment is not caused by motor neurone loss in FALS mice: an electromyographic study. Neuroreport 1996;7:1427-1431.
78. Brooks KJ, Hill MD, Hockings PD, et al. MRI detects early hindlimb muscle atrophy in Gly93Ala superoxide dismutase -1 (G93A SOD1) transgenic mice, an animal model of familial amyotrophic lateral sclerosis. NMR Biomed 2004;17:28-32.
79. Marcuzzo S, Zucca I, Mastropietro A, et al. Hind limb muscle atrophy precedes cerebral neuronal degeneration in G93A-SOD1 mouse model of amyotrophic lateral sclerosis: a longitudinal MRI study. Exp Neurol 2011;231:30-37.
81. Madaro L, Smeriglio P, Molinaro M, et al. Unilateral immobilization: a simple model of limb atrophy in mice. Basic Appl Myol 2008;18:149-153.
82. Herbert RD, Balnave RJ. The effect of position of immobilisation on resting length, resting stiffness, and weight of the soleus muscle of the rabbit. J Orthop Res 1993;11:358-366.
83. Ohmichi Y, Sato J, Ohmichi M, et al. Two-week cast immobilization induced chronic widespread hyperalgesia in rats. Eur J Pain 2012;16:338-348.
86. Booth FW, Kelso JR. Production of rat muscle atrophy by cast fixation. J Appl Physiol 1973;34:404-406.
87. Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. J Anat 1984;138:343-350.
88. Williams PE, Catanese T, Lucey EG, et al. The importance of stretch and contractile activity in the prevention of connective tissue accumulation in muscle. J Anat 1988;158:109-114.
90. Zemková H, Teisinger J, Almon RR, et al. Immobilization atrophy and membrane properties in rat skeletal muscle fibres. Pflugers Arch 1990;416:126-129.
91. Karpakka J, Väänänen K, Orava S, et al. The effects of preimmobilization training and immobilization on collagen synthesis in rat skeletal muscle. Int J Sports Med 1990;11:484-488.
92. Onda A, Kono H, Jiao Q, et al. New mouse model of skeletal muscle atrophy using spiral wire immobilization. Muscle Nerve 2016;54:788-791.
93. Speacht TL, Krause AR, Steiner JL, et al. Combination of hindlimb suspension and immobilization by casting exaggerates sarcopenia by stimulating autophagy but does not worsen osteopenia. Bone 2018;110:29-37.
98. Parks RJ, Fares E, Macdonald JK, et al. A procedure for creating a frailty index based on deficit accumulation in aging mice. J Gerontol A Biol Sci Med Sci 2012;67:217-227.
99. Vanhooren V, Libert C. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 2013;12:8-21.
102. Shavlakadze T, McGeachie J, Grounds MD. Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 2010;11:363-376.
103. Aagaard P, Suetta C, Caserotti P, et al. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 2010;20:49-64.