3. Petermann-Rocha F, Ho FK, Welsh P, et al. Physical capability markers used to define sarcopenia and their association with cardiovascular and respiratory outcomes and all-cause mortality: a prospective study from UK Biobank. Maturitas 2020;138:69-75.
https://doi.org/10.1016/j.maturitas.2020.04.017.
6. Ahmed GM, Abed MN, Alassaf FA. Impact of calcium channel blockers and angiotensin receptor blockers on hematological parameters in type 2 diabetic patients. Naunyn Schmiedebergs Arch Pharmacol 2024;397:1817-28.
https://doi.org/10.1007/s00210-023-02731-y.
8. Hadid KA, Alassaf FA, Mohammed N. Beyond blood sugar: exploring the anti-inflammatory frontier of antidiabetic medications to alleviate diabetic complications. Rom J Med Pract 2024;19:92-9.
https://doi.org/10.37897/RJMP.2024.1.11.
12. Nauck MA, Quast DR, Wefers J, et al. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metab 2021;23 Suppl 3:5-29.
https://doi.org/10.1111/dom.14496.
13. Chai S, Liu F, Yu S, et al. Cognitive protection of incretin-based therapies in patients with type2 diabetes mellitus: a systematic review and meta-analysis based on clinical studies. J Diabetes Investig 2023;14:864-73.
https://doi.org/10.1111/jdi.14015.
14. Guo C, Huang T, Chen A, et al. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res 2016;49:e5826.
https://doi.org/10.1590/1414-431x20165826.
16. Yaribeygi H, Maleki M, Sathyapalan T, et al. Antioxidative potentials of incretin-based medications: a review of molecular mechanisms. Oxid Med Cell Longev 2021;2021:9959320.
https://doi.org/10.1155/2021/9959320.
17. Alfahad M, Qazzaz ME, Abed MN, et al. Comparison of anti-oxidant activity of different brands of esomeprazole available in Iraqi pharmacies. Syst Rev Pharm 2020;11:330-4.
https://doi.org/10.31838/srp.2020.5.48.
18. Bellanti F, Buglio AL, Vendemiale G. Chapter 9. Oxidative stress and sarcopenia. In: Preedy VR, Patel VB, editors. Aging: oxidative stress and dietary antioxidants. 2nd ed. London, UK: Elsevier Inc; 2020.
20. Léger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 2006;576:923-33.
https://doi.org/10.1113/jphysiol.2006.116715.
21. Handayaningsih AE, Iguchi G, Fukuoka H, et al. Reactive oxygen species play an essential role in IGF-I signaling and IGF-I-induced myocyte hypertrophy in C2C12 myocytes. Endocrinology 2011;152:912-21.
https://doi.org/10.1210/en.2010-0981.
22. Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol 2006;574:291-305.
https://doi.org/10.1113/jphysiol.2006.107490.
24. Sakellariou GK, Vasilaki A, Palomero J, et al. Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal 2013;18:603-21.
https://doi.org/10.1089/ars.2012.4623.
25. Kim MJ, Sinam IS, Siddique Z, et al. The link between mitochondrial dysfunction and sarcopenia: an update focusing on the role of pyruvate dehydrogenase kinase 4. Diabetes Metab J 2023;47:153-63.
https://doi.org/10.4093/dmj.2022.0305.
28. Marzetti E, Wohlgemuth SE, Lees HA, et al. Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 2008;129:542-9.
https://doi.org/10.1016/j.mad.2008.05.005.
29. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006;127:397-408.
https://doi.org/10.1016/j.cell.2006.09.024.
33. Ibrahim SL, Abed MN, Mohamed G, et al. Inhibition of branched-chain alpha-keto acid dehydrogenase kinase augments the sensitivity of ovarian and breast cancer cells to paclitaxel. Br J Cancer 2023;128:896-906.
https://doi.org/10.1038/s41416-022-02095-9.
34. Long YC, Cheng Z, Copps KD, et al. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 2011;31:430-41.
https://doi.org/10.1128/mcb.00983-10.
35. Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 2012;13:195-203.
https://doi.org/10.1038/nrm3290.
36. Lee MK, Choi JW, Choi YH, et al. Protective effect of pyropia yezoensis peptide on dexamethasone-induced myotube atrophy in C2C12 myotubes. Mar Drugs 2019;17:284.
https://doi.org/10.3390/md17050284.
37. Timmerman KL, Lee JL, Fujita S, et al. Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes 2010;59:2764-71.
https://doi.org/10.2337/db10-0415.
38. Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common comorbidities. J Endocrinol 2016;229:R67-R81.
https://doi.org/10.1530/joe-15-0533.
39. Ebert SM, Dyle MC, Kunkel SD, et al. Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J Biol Chem 2012;287:27290-301.
https://doi.org/10.1074/jbc.M112.374777.
41. Mankhong S, Kim S, Moon S, et al. Experimental models of sarcopenia: bridging molecular mechanism and therapeutic strategy. Cells 2020;9:1385.
https://doi.org/10.3390/cells9061385.
42. Adeva-Andany MM, Fernández-Fernández C, LópezPereiro Y, et al. The effects of glucagon and the target of rapamycin (TOR) on skeletal muscle protein synthesis and age-dependent sarcopenia in humans. Clin Nutr ESPEN 2021;44:15-25.
https://doi.org/10.1016/j.clnesp.2021.06.025.
43. Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2023;478:1307-24.
https://doi.org/10.1007/s11010-022-04587-x.
45. Abed MN, Alassaf FA, Jasim MHM, et al. Comparison of antioxidant effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole. Pharmacology 2020;105:645-51.
https://doi.org/10.1159/000506232.
46. Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol 2019;234:8152-61.
https://doi.org/10.1002/jcp.27603.
47. Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol 2019;234:1300-12.
https://doi.org/10.1002/jcp.27164.
48. Yaribeygi H, Butler AE, Barreto GE, et al. Antioxidative potential of antidiabetic agents: a possible protective mechanism against vascular complications in diabetic patients. J Cell Physiol 2019;234:2436-46.
https://doi.org/10.1002/jcp.27278.
50. Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes 2019;12:1057-72.
https://doi.org/10.2147/dmso.S186600.
52. Tack W, De Cock AM, Dirinck EL, et al. Pathophysiological interactions between sarcopenia and type 2 diabetes: a two-way street influencing diagnosis and therapeutic options. Diabetes Obes Metab 2024;26:407-16.
https://doi.org/10.1111/dom.15321.
53. Bernardini F, Nusca A, Coletti F, et al. Incretins-based therapies and their cardiovascular effects: new game-changers for the management of patients with diabetes and cardiovascular disease. Pharmaceutics 2023;15:1858.
https://doi.org/10.3390/pharmaceutics15071858.
54. Kobayashi M, Li L, Iwamoto N, et al. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 2009;29:493-502.
https://doi.org/10.1128/mcb.01080-08.
55. Civantos E, Bosch E, Ramirez E, et al. Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway. Diabetes Metab Syndr Obes 2017;10:207-22.
https://doi.org/10.2147/dmso.S132537.
58. Deng C, Cao J, Han J, et al. Liraglutide activates the Nrf2/HO-1 antioxidant pathway and protects brain nerve cells against cerebral ischemia in diabetic rats. Comput Intell Neurosci 2018;2018:3094504.
https://doi.org/10.1155/2018/3094504.
59. Alsalim W, Göransson O, Carr RD, et al. Effect of single-dose DPP-4 inhibitor sitagliptin on β-cell function and incretin hormone secretion after meal ingestion in healthy volunteers and drug-naïve, well-controlled type 2 diabetes subjects. Diabetes Obes Metab 2018;20:1080-5.
https://doi.org/10.1111/dom.13192.
61. Jasim MHM, Alfahad M, Al-Dabbagh BM, et al. Synthesis, characterization, ADME study and in-vitro anti-inflammatory activity of aspirin amino acid conjugates. Pharm Chem J 2023;57:243-9.
https://doi.org/10.1007/s11094-023-02874-5.
62. Thomas MK, Nikooienejad A, Bray R, et al. Dual GIP and GLP-1 receptor agonist tirzepatide improves beta-cell function and insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab 2021;106:388-96.
https://doi.org/10.1210/clinem/dgaa863.
65. Giannocco G, Oliveira KC, Crajoinas RO, et al. Dipeptidyl peptidase IV inhibition upregulates GLUT4 translocation and expression in heart and skeletal muscle of spontaneously hypertensive rats. Eur J Pharmacol 2013;698:74-86.
https://doi.org/10.1016/j.ejphar.2012.09.043.
66. Silva Júnior WS, Souza M, Nogueira Neto JF, et al. Dipeptidyl peptidase 4 activity is related to body composition, measures of adiposity, and insulin resistance in subjects with excessive adiposity and different degrees of glucose tolerance. J Diabetes Res 2019;2019:5238013.
https://doi.org/10.1155/2019/5238013.
67. Kim MH, Kim EH, Jung HS, et al. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicol Appl Pharmacol 2017;315:60-9.
https://doi.org/10.1016/j.taap.2016.12.005.
68. Kawamori D, Shirakawa J, Liew CW, et al. GLP-1 signalling compensates for impaired insulin signalling in regulating beta cell proliferation in βIRKO mice. Diabetologia 2017;60:1442-53.
https://doi.org/10.1007/s00125-017-4303-6.
69. Shimoda M, Kanda Y, Hamamoto S, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 2011;54:1098-108.
https://doi.org/10.1007/s00125-011-2069-9.
70. Tomas E, Stanojevic V, Habener JF. GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul Pept 2011;167:177-84.
https://doi.org/10.1016/j.regpep.2011.01.003.
71. Puddu A, Mach F, Nencioni A, et al. An emerging role of glucagon-like peptide-1 in preventing advanced-glycation-end-product-mediated damages in diabetes. Mediators Inflamm 2013;2013:591056.
https://doi.org/10.1155/2013/591056.
72. Patel V, Joharapurkar A, Dhanesha N, et al. Combination of omeprazole with GLP-1 agonist therapy improves insulin sensitivity and antioxidant activity in liver in type 1 diabetic mice. Pharmacol Rep 2013;65:927-36.
https://doi.org/10.1016/s1734-1140(13)71074-0.
73. Okada K, Kotani K, Yagyu H, et al. Effects of treatment with liraglutide on oxidative stress and cardiac natriuretic peptide levels in patients with type 2 diabetes mellitus. Endocrine 2014;47:962-4.
https://doi.org/10.1007/s12020-014-0246-6.
74. Rizzo M, Abate N, Chandalia M, et al. Liraglutide reduces oxidative stress and restores heme oxygenase-1 and ghrelin levels in patients with type 2 diabetes: a prospective pilot study. J Clin Endocrinol Metab 2015;100:603-6.
https://doi.org/10.1210/jc.2014-2291.
75. Fernández-Millán E, Martín MA, Goya L, et al. Glucagonlike peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation. Free Radic Biol Med 2016;95:16-26.
https://doi.org/10.1016/j.freeradbiomed.2016.03.002.
78. Girges C, Vijiaratnam N, Athauda D, et al. The future of incretin-based approaches for neurodegenerative diseases in older adults: which to choose? A review of their potential efficacy and suitability. Drugs Aging 2021;38:355-73.
https://doi.org/10.1007/s40266-021-00853-7.
79. Kalaitzoglou E, Fowlkes JL, Popescu I, et al. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019;35:e3100.
https://doi.org/10.1002/dmrr.3100.
80. Gilbert MP, Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol (Lausanne) 2020;11:178.
https://doi.org/10.3389/fendo.2020.00178.
85. Al-Dabbagh BMA, Abed MN, Mahmood NM, et al. Antiinflammatory, antioxidant and hepatoprotective potential of milk thistle in albino rats. Lat Am J Pharm 2022;41:1832-41.
86. Andreozzi F, Raciti GA, Nigro C, et al. The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. J Transl Med 2016;14:229.
https://doi.org/10.1186/s12967-016-0985-7.
87. Colin IM, Colin H, Dufour I, et al. Extrapancreatic effects of incretin hormones: evidence for weight-independent changes in morphological aspects and oxidative status in insulin-sensitive organs of the obese nondiabetic Zucker rat (ZFR). Physiol Rep 2016;4:e12886.
https://doi.org/10.14814/phy2.12886.
88. Takada S, Masaki Y, Kinugawa S, et al. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc Res 2016;111:338-47.
https://doi.org/10.1093/cvr/cvw182.
89. Perna S, Guido D, Bologna C, et al. Liraglutide and obesity in elderly: efficacy in fat loss and safety in order to prevent sarcopenia. A perspective case series study. Aging Clin Exp Res 2016;28:1251-7.
https://doi.org/10.1007/s40520-015-0525-y.
90. Liu J, Hu Y, Zhang H, et al. Exenatide treatment increases serum irisin levels in patients with obesity and newly diagnosed type 2 diabetes. J Diabetes Complications 2016;30:1555-9.
https://doi.org/10.1016/j.jdiacomp.2016.07.020.
91. Yajima T, Yajima K, Takahashi H, et al. The effect of dulaglutide on body composition in type 2 diabetes mellitus patients on hemodialysis. J Diabetes Complications 2018;32:759-63.
https://doi.org/10.1016/j.jdiacomp.2018.05.018.
92. Friedrichsen M, Breitschaft A, Tadayon S, et al. The effect of semaglutide 2.4 mg once weekly on energy intake, appetite, control of eating, and gastric emptying in adults with obesity. Diabetes Obes Metab 2021;23:754-62.
https://doi.org/10.1111/dom.14280.
93. Ard J, Fitch A, Fruh S, et al. Weight loss and maintenance related to the mechanism of action of glucagon-like peptide 1 receptor agonists. Adv Ther 2021;38:2821-39.
https://doi.org/10.1007/s12325-021-01710-0.
95. McLeod M, Breen L, Hamilton DL, et al. Live strong and prosper: the importance of skeletal muscle strength for healthy ageing. Biogerontology 2016;17:497-510.
https://doi.org/10.1007/s10522-015-9631-7.
96. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 2015;14:58-74.
https://doi.org/10.1038/nrd4467.
97. Locatelli JC, Costa JG, Haynes A, et al. Incretin-based weight loss pharmacotherapy: can resistance exercise optimize changes in body composition? Diabetes Care 2024;dci230100.
https://doi.org/10.2337/dci23-0100.
98. Hartono FA, Martin-Arrowsmith PW, Peeters WM, et al. The effects of dietary protein supplementation on acute changes in muscle protein synthesis and longer-term changes in muscle mass, strength, and aerobic capacity in response to concurrent resistance and endurance exercise in healthy adults: a systematic review. Sports Med 2022;52:1295-328.
https://doi.org/10.1007/s40279-021-01620-9.
100. Bellicha A, van Baak MA, Battista F, et al. Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: an overview of 12 systematic reviews and 149 studies. Obes Rev 2021;22 Suppl 4:e13256.
https://doi.org/10.1111/obr.13256.